June  2008, 3(2): 395-411. doi: 10.3934/nhm.2008.3.395

Spectral plot properties: Towards a qualitative classification of networks

1. 

Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany

Received  August 2007 Revised  February 2008 Published  March 2008

We introduce a tentative classification scheme for empirical networks based on global qualitative properties detected through the spectrum of the Laplacian of the graph underlying the network. Our method identifies several distinct types of networks across different domains of applications, indicates hidden regularity properties and provides evidence for processes like node duplication behind the evolution or construction of a given class of networks.
Citation: Anirban Banerjee, Jürgen Jost. Spectral plot properties: Towards a qualitative classification of networks. Networks and Heterogeneous Media, 2008, 3 (2) : 395-411. doi: 10.3934/nhm.2008.3.395
[1]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[2]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[3]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[4]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[5]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[6]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[7]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[8]

Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075

[9]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

[10]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[11]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems and Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[12]

Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260

[13]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[14]

Lu Yang, Guangsheng Wei, Vyacheslav Pivovarchik. Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex. Inverse Problems and Imaging, 2021, 15 (2) : 257-270. doi: 10.3934/ipi.2020063

[15]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295

[16]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[17]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[18]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[19]

GuanLin Li, Sebastien Motsch, Dylan Weber. Bounded confidence dynamics and graph control: Enforcing consensus. Networks and Heterogeneous Media, 2020, 15 (3) : 489-517. doi: 10.3934/nhm.2020028

[20]

Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]