September  2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413

Homogenization of spectral problems in bounded domains with doubly high contrasts

1. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom, United Kingdom, United Kingdom

Received  April 2008 Published  June 2008

Homogenization of a spectral problem in a bounded domain with a high contrast in both stiffness and density is considered. For a special critical scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are constructed. Two-scale limit equations are derived and relate to certain non-standard self-adjoint operators. In particular they explicitly display the first two terms in the asymptotic expansion for the eigenvalues, with a surprising bound for the error of order $\varepsilon^{5/4}$ proved.
Citation: Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413
[1]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[2]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[3]

François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006

[4]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[5]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[6]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[7]

Mohamed Camar-Eddine, Laurent Pater. Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks and Heterogeneous Media, 2013, 8 (4) : 913-941. doi: 10.3934/nhm.2013.8.913

[8]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[11]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[12]

Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic and Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201

[13]

Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems and Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[15]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic and Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[16]

João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446

[17]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[18]

Marc Briane, David Manceau. Duality results in the homogenization of two-dimensional high-contrast conductivities. Networks and Heterogeneous Media, 2008, 3 (3) : 509-522. doi: 10.3934/nhm.2008.3.509

[19]

Léo Girardin. Competition in periodic media:Ⅰ-Existence of pulsating fronts. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1341-1360. doi: 10.3934/dcdsb.2017065

[20]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (28)

[Back to Top]