
Previous Article
Leaf superposition property for integer rectifiable currents
 NHM Home
 This Issue

Next Article
Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model
Multiphase modeling and qualitative analysis of the growth of tumor cords
1.  Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 
[1] 
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 25932605. doi: 10.3934/dcdsb.2018129 
[2] 
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 737765. doi: 10.3934/dcds.2010.26.737 
[3] 
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 293308. doi: 10.3934/dcdsb.2011.15.293 
[4] 
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 9971008. doi: 10.3934/dcdsb.2016.21.997 
[5] 
Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 33993411. doi: 10.3934/dcds.2019140 
[6] 
Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with GibbsThomson relation and time delays. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 35353551. doi: 10.3934/dcdsb.2017213 
[7] 
JianGuo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 30113035. doi: 10.3934/dcdsb.2018297 
[8] 
Fujun Zhou, Shangbin Cui. Wellposedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 929943. doi: 10.3934/dcds.2008.21.929 
[9] 
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2020084 
[10] 
Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 5572. doi: 10.3934/dcdsb.2014.19.55 
[11] 
T.L. Jackson. A mathematical model of prostate tumor growth and androgenindependent relapse. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 187201. doi: 10.3934/dcdsb.2004.4.187 
[12] 
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263278. doi: 10.3934/mbe.2013.10.263 
[13] 
Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 11731187. doi: 10.3934/mbe.2015.12.1173 
[14] 
Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 193202. doi: 10.3934/dcdsb.2018013 
[15] 
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems  A, 2019, 39 (5) : 24732510. doi: 10.3934/dcds.2019105 
[16] 
Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 12831326. doi: 10.3934/dcds.2010.27.1283 
[17] 
Harald Garcke, Kei Fong Lam. Analysis of a CahnHilliard system with nonzero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems  A, 2017, 37 (8) : 42774308. doi: 10.3934/dcds.2017183 
[18] 
Andrea Signori. Optimal treatment for a phase field system of CahnHilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2019, 0 (0) : 00. doi: 10.3934/mcrf.2019040 
[19] 
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 14551468. doi: 10.3934/dcdsb.2016006 
[20] 
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (3) : 465476. doi: 10.3934/dcdss.2018025 
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]