September  2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461

Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain


Department of Mathematics and Materials Research Institute, Penn State University, University Park, PA 16802


Université de Lyon, Université Lyon 1, Institut Camille Jordan CNRS UMR 5208, 43, boulevard du 11 november 1918, F-69622 Villeurbanne, France

Received  April 2008 Published  June 2008

Let $A$ be an annular type domain in $\mathbb{R}^2$. Let $A_\delta$ be a perforated domain obtained by punching periodic holes of size $\delta$ in $A$; here, $\delta$ is sufficiently small. Suppose that $\J$ is the class of complex-valued maps in $A_\delta$, of modulus $1$ on $\partial A_\delta$ and of degrees $1$ on the components of $\partial A$, respectively $0$ on the boundaries of the holes.

We consider the existence of a minimizer of the Ginzburg-Landau energy

$E_\lambda(u)=\frac 1\2_[\int_{A_\delta}](|\nabla u|^2+\frac\lambda 2(1-|u|^2)^2)$
among all maps in $u\in\J$.

It turns out that, under appropriate assumptions on $\lambda=\lambda(\delta)$, existence is governed by the asymptotic behavior of the $H^1$-capacity of $A_\delta$. When the limit of the capacities is $>\pi$, we show that minimizers exist and that they are, when $\delta\to 0$, equivalent to minimizers of the same problem in the subclass of $\J$ formed by the $\mathbb{S}^1$-valued maps. This result parallels the one obtained, for a fixed domain, in [3], and reduces homogenization of the Ginzburg-Landau functional to the one of harmonic maps, already known from [2].

When the limit is $<\pi$, we prove that, for small $\delta$, the minimum is not attained, and that minimizing sequences develop vortices. In the case of a fixed domain, this was proved in [1].
Citation: Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks & Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179


Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121


Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977


Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks & Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115


Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905


Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145


Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205


Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715


Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343


Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361


Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345


N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647


Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048


Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713


Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149


Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871


Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173


Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280


N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476


Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

2020 Impact Factor: 1.213


  • PDF downloads (39)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]