September  2008, 3(3): 509-522. doi: 10.3934/nhm.2008.3.509

Duality results in the homogenization of two-dimensional high-contrast conductivities

1. 

Centre de Mathématiques INSA de Rennes & IRMAR, 20 ave. des Buttes de Coësmes, 35043 Rennes Cedex

2. 

I.R.M.A.R., Université de Rennes 2, Rennes Cedex, France

Received  January 2008 Published  June 2008

The paper deals with some extensions of the Keller-Dykhneduality relations arising in the classical homogenization of two-dimensional uniformly bounded conductivities, to the case of high-contrast conductivities. Only assuming a $L^1$-bound on the conductivity we prove that the conductivity and its dual converge respectively, in a suitable sense, to the homogenized conductivity and its dual. In the periodic case a similar duality result is obtained under a less restrictive assumption.
Citation: Marc Briane, David Manceau. Duality results in the homogenization of two-dimensional high-contrast conductivities. Networks and Heterogeneous Media, 2008, 3 (3) : 509-522. doi: 10.3934/nhm.2008.3.509
[1]

Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou. Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1 (4) : 537-568. doi: 10.3934/nhm.2006.1.537

[2]

Mohamed Camar-Eddine, Laurent Pater. Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks and Heterogeneous Media, 2013, 8 (4) : 913-941. doi: 10.3934/nhm.2013.8.913

[3]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

[4]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[5]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial and Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[6]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355

[7]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[8]

Giovanni Scilla. Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9 (1) : 169-189. doi: 10.3934/nhm.2014.9.169

[9]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[10]

François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006

[11]

Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems and Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623

[12]

Elissar Nasreddine. Two-dimensional individual clustering model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307

[13]

Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009

[14]

Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in two-dimensional nematics. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 323-340. doi: 10.3934/dcdss.2015.8.323

[15]

Min Chen. Numerical investigation of a two-dimensional Boussinesq system. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1169-1190. doi: 10.3934/dcds.2009.23.1169

[16]

Fumihiko Nakamura, Michael C. Mackey. Asymptotic (statistical) periodicity in two-dimensional maps. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021227

[17]

Jinjing Jiao, Guanghua Shi. Quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5157-5180. doi: 10.3934/cpaa.2020231

[18]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[19]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[20]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]