September  2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555

Direct integral decomposition for periodic function spaces and application to Bloch waves

1. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170-3, Correo 3, Santiago

2. 

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello s/n, Casilla 447, Chillán, Chile

Received  April 2008 Published  June 2008

In this paper, we study a direct integral decomposition for the spaces $L^2(O)$ and $H^1(O)$ based on $(\xi,Y^*)-$periodic functions. Using this decomposition we can write the Green's operator (associated to the classical Stokes system in fluid mechanics) in terms of a family of self-adjoint compact operators which depend on the parameter $\xi$. As a consequence, we obtain the so-called Bloch waves associated to the Stokes system in the case of a periodic perforated domain.
Citation: Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555
[1]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[2]

Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan. Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12 (4) : 525-550. doi: 10.3934/nhm.2017022

[3]

Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119

[4]

Yitong Pei, Fengxia Liu, Boling Guo, Wuming Liu. The periodic initial value problem for Landau–Lifshitz–Bloch–Maxwell systeme. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022168

[5]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure and Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[6]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[7]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017

[8]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems and Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[9]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[10]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[11]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[12]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[13]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[14]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[15]

Lina Guo, Yulin Zhao. Existence of periodic waves for a perturbed quintic BBM equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4689-4703. doi: 10.3934/dcds.2020198

[16]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[17]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[18]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[19]

Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022, 15 (9) : 2609-2632. doi: 10.3934/dcdss.2022070

[20]

Térence Bayen, Alain Rapaport, Fatima-Zahra Tani. Optimal periodic control for scalar dynamics under integral constraint on the input. Mathematical Control and Related Fields, 2020, 10 (3) : 547-571. doi: 10.3934/mcrf.2020010

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]