September  2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555

Direct integral decomposition for periodic function spaces and application to Bloch waves

1. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170-3, Correo 3, Santiago

2. 

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello s/n, Casilla 447, Chillán, Chile

Received  April 2008 Published  June 2008

In this paper, we study a direct integral decomposition for the spaces $L^2(O)$ and $H^1(O)$ based on $(\xi,Y^*)-$periodic functions. Using this decomposition we can write the Green's operator (associated to the classical Stokes system in fluid mechanics) in terms of a family of self-adjoint compact operators which depend on the parameter $\xi$. As a consequence, we obtain the so-called Bloch waves associated to the Stokes system in the case of a periodic perforated domain.
Citation: Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks & Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555
[1]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[2]

Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan. Homogenization of stokes system using bloch waves. Networks & Heterogeneous Media, 2017, 12 (4) : 525-550. doi: 10.3934/nhm.2017022

[3]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[4]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[5]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[6]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[7]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[8]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[9]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[10]

B. Bidégaray-Fesquet, F. Castella, Pierre Degond. From Bloch model to the rate equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 1-26. doi: 10.3934/dcds.2004.11.1

[11]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[12]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[13]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[14]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[15]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[16]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

[17]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

[18]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[19]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[20]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]