-
Previous Article
Evolution in off-critical diblock copolymer melts
- NHM Home
- This Issue
-
Next Article
Direct integral decomposition for periodic function spaces and application to Bloch waves
Globally stable quasistatic evolution in plasticity with softening
1. | SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014, Trieste, Italy |
2. | SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste |
3. | SISSA-International School for Advanced Studies, Via Beirut 2-4,, 34014, Trieste, Italy |
[1] |
Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189 |
[2] |
Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97 |
[3] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[4] |
Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193 |
[5] |
T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215 |
[6] |
M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure and Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495 |
[7] |
Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1 |
[8] |
Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257 |
[9] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[10] |
Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076 |
[11] |
Virginia Agostiniani. Second order approximations of quasistatic evolution problems in finite dimension. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1125-1167. doi: 10.3934/dcds.2012.32.1125 |
[12] |
Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43 |
[13] |
Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467 |
[14] |
Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591 |
[15] |
Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527 |
[16] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control and Related Fields, 2022, 12 (2) : 275-301. doi: 10.3934/mcrf.2021022 |
[17] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Relaxation of optimal control problems driven by nonlinear evolution equations. Evolution Equations and Control Theory, 2020, 9 (4) : 1027-1040. doi: 10.3934/eect.2020050 |
[18] |
Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256 |
[19] |
Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29 |
[20] |
G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]