September  2008, 3(3): 615-632. doi: 10.3934/nhm.2008.3.615

Evolution in off-critical diblock copolymer melts

1. 

Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom

2. 

Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom

3. 

Department of Mathematics, The George Washington University, 2115 G Street, Washington, DC 20052, United States

Received  May 2008 Published  June 2008

We study the evolution of diblock copolymer melts in which one component has small volume fraction. In this case one observes phase morphologies which consist of small spheres of the minority component embedded in the other component. Based on the Ohta-Kawasaki free energy one can set up an evolution equation which has the interpretation of a gradient flow. We restrict this gradient flow to morphologies in which the minority phase consists of spheres and derive monopole approximations for different parameter regimes. We use these approximations for simulations of large particle systems.
Citation: Michael Helmers, Barbara Niethammer, Xiaofeng Ren. Evolution in off-critical diblock copolymer melts. Networks & Heterogeneous Media, 2008, 3 (3) : 615-632. doi: 10.3934/nhm.2008.3.615
[1]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[2]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[3]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[4]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[5]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[6]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems & Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[7]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[8]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[9]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[10]

K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803

[11]

Dmitrii Rachinskii. Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 227-243. doi: 10.3934/dcdsb.2016.21.227

[12]

B.G. Fitzpatrick, M.A. Jeffris. On continuous dependence under approximation for groundwater flow models with distributed and pointwise observations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 141-149. doi: 10.3934/dcds.1996.2.141

[13]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[14]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[15]

Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333

[16]

François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355

[17]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[18]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[19]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[20]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]