-
Previous Article
Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping
- NHM Home
- This Issue
-
Next Article
Modelling and simulation of fires in tunnel networks
Vertex control of flows in networks
1. | University of L'Aquila, Faculty of Engineering, Piazzale E. Pontieri 2, I-67100 Monteluco di Roio (L’Aquila), Italy |
2. | University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1000 Ljubljana, Slovenia |
3. | University of Tübingen, Mathematics Institute, Auf der Morgenstelle 10, D-72076 Tübingen |
4. | Eötvös Loránd University Budapest, Department of Applied Analysis, Pázmány Péter sétány 1/c., Budapest H-1117, Hungary |
[1] |
Guillaume Bal, Alexandre Jollivet. Boundary control for transport equations. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022014 |
[2] |
Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations and Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016 |
[3] |
Fabio Camilli, Raul De Maio, Andrea Tosin. Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12 (2) : 191-215. doi: 10.3934/nhm.2017008 |
[4] |
Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904 |
[5] |
Christian Budde, Marjeta Kramar Fijavž. Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16 (4) : 553-567. doi: 10.3934/nhm.2021017 |
[6] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
[7] |
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003 |
[8] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[9] |
Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks and Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127 |
[10] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[11] |
Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179 |
[12] |
Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105 |
[13] |
Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605 |
[14] |
Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 |
[15] |
Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070 |
[16] |
Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735 |
[17] |
Frank Neubrander, Koray Özer, Lee Windsperger. On subdiagonal rational Padé approximations and the Brenner-Thomée approximation theorem for operator semigroups. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3565-3579. doi: 10.3934/dcdss.2020238 |
[18] |
Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016 |
[19] |
Luisa Arlotti. Explicit transport semigroup associated to abstract boundary conditions. Conference Publications, 2011, 2011 (Special) : 102-111. doi: 10.3934/proc.2011.2011.102 |
[20] |
Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]