-
Previous Article
Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis
- NHM Home
- This Issue
-
Next Article
An existence result for the sandpile problem on flat tables with walls
The homogenized model of small oscillations of complex fluids
1. | Institute of Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Lenin Ave 47, Kharkiv 61164, Ukraine |
2. | Department of Mathematics and Materials Research Institute, Penn State University, University Park, PA-16802-6401, 218 Mc Allister Building, United States |
3. | Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Lenin Ave 47, Kharkiv 61164, Ukraine |
We study the asymptotic behavior of the microscopic model as $\varepsilon\rightarrow 0$ and obtain the homogenized equations that can be considered as a macroscopic model of diluted solutions of interacting colloidal particles.
[1] |
Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255 |
[2] |
Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331 |
[3] |
Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565 |
[4] |
Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021043 |
[5] |
Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207 |
[6] |
Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037 |
[7] |
Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071 |
[8] |
Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096 |
[9] |
Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004 |
[10] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146 |
[11] |
Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212 |
[12] |
Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic and Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361 |
[13] |
Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583 |
[14] |
Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719 |
[15] |
M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503 |
[16] |
Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138 |
[17] |
Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068 |
[18] |
Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231 |
[19] |
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 |
[20] |
Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]