December  2008, 3(4): 863-879. doi: 10.3934/nhm.2008.3.863

Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis

1. 

Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

Received  September 2007 Revised  January 2008 Published  October 2008

In this paper, we consider a system of nonlinear partial differential equations modeling the Lotka Volterra interactions of preys and actively moving predators with prey-taxis and spatial diffusion. The interaction between predators are modelized by the statement of a food pyramid condition. We establish the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. This paper is a generalization of the results obtained in [2].
Citation: Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863
[1]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[2]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[3]

Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021

[4]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[5]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[6]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[7]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[8]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[9]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[10]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[11]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[12]

Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure & Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423

[13]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[14]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[15]

Jinfeng Wang, Hongxia Fan. Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 909-918. doi: 10.3934/dcdsb.2016.21.909

[16]

Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks & Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813

[17]

Xueping Li, Jingli Ren, Sue Ann Campbell, Gail S. K. Wolkowicz, Huaiping Zhu. How seasonal forcing influences the complexity of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 785-807. doi: 10.3934/dcdsb.2018043

[18]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[19]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[20]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]