March  2009, 4(1): 1-18. doi: 10.3934/nhm.2009.4.1

Self--motion of camphor discs. model and analysis

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Faculty of Mathematics, Kyushu University, Fukuoka, 812-8581, Japan

3. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Kawasaki, 214-8571, Japan

Received  July 2008 Revised  October 2008 Published  February 2009

In the present paper, a model describing the self-motion of a camphor disc on water is proposed. The stability of a standing camphor disc is investigated by analyzing the model equation, and a pitchfork type bifurcation diagram of a traveling spot is shown. Multiple camphor discs are also treated by the model equations, and the repulsive interaction of spots is discussed.
Citation: Xinfu Chen, Shin-Ichiro Ei, Masayasu Mimura. Self--motion of camphor discs. model and analysis. Networks & Heterogeneous Media, 2009, 4 (1) : 1-18. doi: 10.3934/nhm.2009.4.1
[1]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[2]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[3]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[4]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[5]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[6]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[7]

Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135

[8]

Didier Aussel, Rafael Correa, Matthieu Marechal. Electricity spot market with transmission losses. Journal of Industrial & Management Optimization, 2013, 9 (2) : 275-290. doi: 10.3934/jimo.2013.9.275

[9]

Daniel Balagué, José A. Carrillo, Yao Yao. Confinement for repulsive-attractive kernels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1227-1248. doi: 10.3934/dcdsb.2014.19.1227

[10]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[11]

Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030

[12]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[13]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[14]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

[15]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[16]

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847

[17]

Vitali Kapovitch, Anton Petrunin, Wilderich Tuschmann. On the torsion in the center conjecture. Electronic Research Announcements, 2018, 25: 27-35. doi: 10.3934/era.2018.25.004

[18]

Keith Burns, Amie Wilkinson. Dynamical coherence and center bunching. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 89-100. doi: 10.3934/dcds.2008.22.89

[19]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[20]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]