# American Institute of Mathematical Sciences

March  2009, 4(1): 1-18. doi: 10.3934/nhm.2009.4.1

## Self--motion of camphor discs. model and analysis

 1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 2 Faculty of Mathematics, Kyushu University, Fukuoka, 812-8581, Japan 3 Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Kawasaki, 214-8571, Japan

Received  July 2008 Revised  October 2008 Published  February 2009

In the present paper, a model describing the self-motion of a camphor disc on water is proposed. The stability of a standing camphor disc is investigated by analyzing the model equation, and a pitchfork type bifurcation diagram of a traveling spot is shown. Multiple camphor discs are also treated by the model equations, and the repulsive interaction of spots is discussed.
Citation: Xinfu Chen, Shin-Ichiro Ei, Masayasu Mimura. Self--motion of camphor discs. model and analysis. Networks and Heterogeneous Media, 2009, 4 (1) : 1-18. doi: 10.3934/nhm.2009.4.1
 [1] Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 [2] Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 [3] Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 [4] Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 [5] Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure and Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161 [6] A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97 [7] Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157 [8] Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 [9] Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135 [10] Daniel Balagué, José A. Carrillo, Yao Yao. Confinement for repulsive-attractive kernels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1227-1248. doi: 10.3934/dcdsb.2014.19.1227 [11] Didier Aussel, Rafael Correa, Matthieu Marechal. Electricity spot market with transmission losses. Journal of Industrial and Management Optimization, 2013, 9 (2) : 275-290. doi: 10.3934/jimo.2013.9.275 [12] Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235 [13] Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051 [14] Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030 [15] Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure and Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027 [16] Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure and Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549 [17] E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 [18] Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 [19] Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847 [20] Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067

2021 Impact Factor: 1.41

## Metrics

• PDF downloads (132)
• HTML views (0)
• Cited by (13)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]