• Previous Article
    A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface
  • NHM Home
  • This Issue
  • Next Article
    Self--motion of camphor discs. model and analysis
March  2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19

Feedback stabilization of a coupled string-beam system

1. 

Département de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia, Tunisia

2. 

Institut de Recherche Mathématique Avancée, Université Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg, France

Received  December 2007 Revised  September 2008 Published  February 2009

We consider a stabilization problem for a coupled string-beam system. We prove some decay results of the energy of the system. The method used is based on the methodology introduced in Ammari and Tucsnak [2] where the exponential and weak stability for the closed loop problem is reduced to a boundedness property of the transfer function of the associated open loop system. Morever, we prove, for the same model but with two control functions, independently of the length of the beam that the energy decay with a polynomial rate for all regular initial data. The method used, in this case, is based on a frequency domain method and combine a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.
Citation: Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19
[1]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Erratum and addendum to "Feedback stabilization of a coupled string-beam system" by K. Ammari, M. Jellouli and M. Mehrenberger; N. H. M: 4 (2009), 19--34. Networks and Heterogeneous Media, 2011, 6 (4) : 783-784. doi: 10.3934/nhm.2011.6.783

[2]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control and Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[3]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations and Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[6]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[7]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[8]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[9]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[10]

Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations and Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069

[11]

Huawen Ye, Honglei Xu. Global stabilization for ball-and-beam systems via state and partial state feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 17-29. doi: 10.3934/jimo.2016.12.17

[12]

Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319

[13]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[14]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[15]

Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092

[16]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[17]

Ruofeng Rao, Shouming Zhong. Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1375-1393. doi: 10.3934/dcdss.2020280

[18]

Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control and Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141

[19]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[20]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control and Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (9)

[Back to Top]