June  2009, 4(2): 381-392. doi: 10.3934/nhm.2009.4.381

A salinity sensor system for estuary studies

1. 

Electrical Engineering Department, Box 352500, University of Washington, Seattle, WA 98195-2500, United States, United States, United States, United States, United States, United States

Received  September 2008 Revised  February 2009 Published  June 2009

In this paper, we present the design, development and testing of a salinity sensor system for estuary studies. The salinity sensor was designed keeping size, cost and functionality in mind. The target market for this sensor is in hydrology where many salinity sensors are needed at low cost. Our sensor can be submersed in water for up to two weeks (all electronics are completely sealed) while salinity is recorded on-board at user-defined intervals. The data is then downloaded to a computer in the laboratory, after which the sensor is recharged, cleaned for biofouling and ready to be used again. The system uses a software program to download, display and analyze the sensor data. Our initial laboratory testing shows the salinity sensor system is functional. The novelty of this work is in the use of toroidal (inductive) conductivity sensors, the resulting low cost and simple design.
Citation: Thanh-Tung Pham, Thomas Green, Jonathan Chen, Phuong Truong, Aditya Vaidya, Linda Bushnell. A salinity sensor system for estuary studies. Networks & Heterogeneous Media, 2009, 4 (2) : 381-392. doi: 10.3934/nhm.2009.4.381
[1]

Alain Bossavit. Magnetic forces in and on a magnet. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1589-1600. doi: 10.3934/dcdss.2019108

[2]

Hiroshi Inoue. Magnetic hydrodynamics equations in movingboundaries. Conference Publications, 2005, 2005 (Special) : 397-402. doi: 10.3934/proc.2005.2005.397

[3]

Edward Della Torre, Lawrence H. Bennett. Analysis and simulations of magnetic materials. Conference Publications, 2005, 2005 (Special) : 854-861. doi: 10.3934/proc.2005.2005.854

[4]

Shruti Agarwal, Gilles Carbou, Stéphane Labbé, Christophe Prieur. Control of a network of magnetic ellipsoidal samples. Mathematical Control & Related Fields, 2011, 1 (2) : 129-147. doi: 10.3934/mcrf.2011.1.129

[5]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[6]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[7]

Mário Jorge Dias Carneiro, Alexandre Rocha. A generic property of exact magnetic Lagrangians. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4183-4194. doi: 10.3934/dcds.2012.32.4183

[8]

Youcef Amirat, Kamel Hamdache. On a heated incompressible magnetic fluid model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 675-696. doi: 10.3934/cpaa.2012.11.675

[9]

Wafaa Assaad, Ayman Kachmar. The influence of magnetic steps on bulk superconductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6623-6643. doi: 10.3934/dcds.2016087

[10]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[11]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[12]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[13]

Jessica Hyde, Daniel Kelleher, Jesse Moeller, Luke Rogers, Luis Seda. Magnetic Laplacians of locally exact forms on the Sierpinski Gasket. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2299-2319. doi: 10.3934/cpaa.2017113

[14]

Hanming Zhou. Lens rigidity with partial data in the presence of a magnetic field. Inverse Problems & Imaging, 2018, 12 (6) : 1365-1387. doi: 10.3934/ipi.2018057

[15]

Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Smooth control of nanowires by means of a magnetic field. Communications on Pure & Applied Analysis, 2009, 8 (3) : 871-879. doi: 10.3934/cpaa.2009.8.871

[16]

Laurent Baratchart, Sylvain Chevillard, Douglas Hardin, Juliette Leblond, Eduardo Andrade Lima, Jean-Paul Marmorat. Magnetic moment estimation and bounded extremal problems. Inverse Problems & Imaging, 2019, 13 (1) : 39-67. doi: 10.3934/ipi.2019003

[17]

Serge Nicaise, Simon Stingelin, Fredi Tröltzsch. Optimal control of magnetic fields in flow measurement. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 579-605. doi: 10.3934/dcdss.2015.8.579

[18]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic & Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

[19]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[20]

Nurlan Dairbekov, Gunther Uhlmann. Reconstructing the metric and magnetic field from the scattering relation. Inverse Problems & Imaging, 2010, 4 (3) : 397-409. doi: 10.3934/ipi.2010.4.397

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (0)

[Back to Top]