-
Previous Article
Comparison of two data assimilation algorithms for shallow water flows
- NHM Home
- This Issue
-
Next Article
A salinity sensor system for estuary studies
Control of systems of conservation laws with boundary errors
1. | LAAS-CNRS, University of Toulouse, 7, avenue du Colonel Roche, 31077 Toulouse, France |
[1] |
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717 |
[2] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[3] |
Jean-Michel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1337-1359. doi: 10.3934/dcdsb.2010.14.1337 |
[4] |
Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419 |
[5] |
Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004 |
[6] |
Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761 |
[7] |
A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289 |
[8] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2441-2474. doi: 10.3934/cpaa.2021049 |
[9] |
Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329 |
[10] |
Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525 |
[11] |
Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235 |
[12] |
Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control and Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005 |
[13] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control and Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[14] |
Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133 |
[15] |
Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35 |
[16] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[17] |
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 |
[18] |
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520 |
[19] |
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 |
[20] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]