December  2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667

Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers

1. 

Dipartimento di Matematica e Applicazioni "R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli

2. 

SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

Received  January 2009 Revised  June 2009 Published  October 2009

In the framework of linear elasticity, we study the limit of a class of discrete free energies modeling strain-alignment-coupled systems by a rigorous coarse-graining procedure, as the number of molecules diverges. We focus on three paradigmatic examples: magnetostrictive solids, ferroelectric crystals and nematic elastomers, obtaining in the limit three continuum models consistent with those commonly employed in the current literature. We also derive the correspondent macroscopic energies in the presence of displacement boundary conditions and of various kinds of applied external fields.
Citation: Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks & Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667
[1]

Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419

[2]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[3]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[4]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[5]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[6]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[7]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[8]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[9]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[10]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[11]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[12]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[13]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[14]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[15]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[16]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[17]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[18]

Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045

[19]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[20]

Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

[Back to Top]