
Previous Article
A nonMarkovian model of rill erosion
 NHM Home
 This Issue

Next Article
Discretetocontinuum limits for strainalignmentcoupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers
Spectrum analysis of a serially connected EulerBernoulli beams problem
1.  LAMAV, FR CNRS 2956, Université de Valenciennes et du HainautCambrésis, Le Mont Houy, 59313 VALENCIENNES Cedex 9, France 
[1] 
Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 1927. doi: 10.3934/era.2014.21.19 
[2] 
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems  A, 2011, 30 (3) : 917944. doi: 10.3934/dcds.2011.30.917 
[3] 
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems  A, 2009, 24 (4) : 12051208. doi: 10.3934/dcds.2009.24.1205 
[4] 
JeanPierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 42394269. doi: 10.3934/dcds.2013.33.4239 
[5] 
Soña Pavlíková, Daniel Ševčovič. On construction of upper and lower bounds for the HOMOLUMO spectral gap. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 5369. doi: 10.3934/naco.2019005 
[6] 
Shuang Chen, Jun Shen. Large spectral gap induced by small delay and its application to reduction. Discrete & Continuous Dynamical Systems  A, 2020, 40 (7) : 45334564. doi: 10.3934/dcds.2020190 
[7] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[8] 
Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected EulerBernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785807. doi: 10.3934/cpaa.2012.11.785 
[9] 
Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a starshaped network of EulerBernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723747. doi: 10.3934/nhm.2008.3.723 
[10] 
Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semiconical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020023 
[11] 
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multispecies operator linearized around nonequilibrium maxwell distributions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 25492573. doi: 10.3934/cpaa.2020112 
[12] 
Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenzlike maps. Discrete & Continuous Dynamical Systems  A, 2020, 40 (3) : 13091360. doi: 10.3934/dcds.2020079 
[13] 
Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 10051012. doi: 10.3934/proc.2007.2007.1005 
[14] 
Erik Kropat, Silja MeyerNieberg, GerhardWilhelm Weber. Bridging the gap between variational homogenization results and twoscale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223250. doi: 10.3934/naco.2017016 
[15] 
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 745759. doi: 10.3934/dcdss.2011.4.745 
[16] 
Eugenia Pérez. On periodic Steklov type eigenvalue problems on halfbands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 859883. doi: 10.3934/dcdsb.2007.7.859 
[17] 
Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral prp conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020147 
[18] 
Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Kortewegde Vries equation on a treeshaped network. Evolution Equations & Control Theory, 2020, 9 (3) : 673692. doi: 10.3934/eect.2020028 
[19] 
Philippe Jaming, Vilmos Komornik. Moving and oblique observations of beams and plates. Evolution Equations & Control Theory, 2020, 9 (2) : 447468. doi: 10.3934/eect.2020013 
[20] 
Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete & Continuous Dynamical Systems  A, 2015, 35 (3) : 9851008. doi: 10.3934/dcds.2015.35.985 
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]