
Previous Article
A nonMarkovian model of rill erosion
 NHM Home
 This Issue

Next Article
Discretetocontinuum limits for strainalignmentcoupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers
Spectrum analysis of a serially connected EulerBernoulli beams problem
1.  LAMAV, FR CNRS 2956, Université de Valenciennes et du HainautCambrésis, Le Mont Houy, 59313 VALENCIENNES Cedex 9, France 
[1] 
Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 1927. doi: 10.3934/era.2014.21.19 
[2] 
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917944. doi: 10.3934/dcds.2011.30.917 
[3] 
Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749766. doi: 10.3934/eect.2020091 
[4] 
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 12051208. doi: 10.3934/dcds.2009.24.1205 
[5] 
JeanPierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 42394269. doi: 10.3934/dcds.2013.33.4239 
[6] 
Soña Pavlíková, Daniel Ševčovič. On construction of upper and lower bounds for the HOMOLUMO spectral gap. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 5369. doi: 10.3934/naco.2019005 
[7] 
Shuang Chen, Jun Shen. Large spectral gap induced by small delay and its application to reduction. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 45334564. doi: 10.3934/dcds.2020190 
[8] 
Luís Simão Ferreira. A lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles. Kinetic and Related Models, 2022, 15 (1) : 91117. doi: 10.3934/krm.2021045 
[9] 
Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected EulerBernoulli beams and strings. Communications on Pure and Applied Analysis, 2012, 11 (2) : 785807. doi: 10.3934/cpaa.2012.11.785 
[10] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[11] 
Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a starshaped network of EulerBernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3 (4) : 723747. doi: 10.3934/nhm.2008.3.723 
[12] 
Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425437. doi: 10.3934/naco.2020042 
[13] 
Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semiconical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877911. doi: 10.3934/mcrf.2020023 
[14] 
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multispecies operator linearized around nonequilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 25492573. doi: 10.3934/cpaa.2020112 
[15] 
Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenzlike maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 13091360. doi: 10.3934/dcds.2020079 
[16] 
Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 10051012. doi: 10.3934/proc.2007.2007.1005 
[17] 
Erik Kropat, Silja MeyerNieberg, GerhardWilhelm Weber. Bridging the gap between variational homogenization results and twoscale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223250. doi: 10.3934/naco.2017016 
[18] 
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems  S, 2011, 4 (3) : 745759. doi: 10.3934/dcdss.2011.4.745 
[19] 
Yassine El Gantouh, Said Hadd. Wellposedness and approximate controllability of neutral network systems. Networks and Heterogeneous Media, 2021, 16 (4) : 569589. doi: 10.3934/nhm.2021018 
[20] 
Eugenia Pérez. On periodic Steklov type eigenvalue problems on halfbands and the spectral homogenization problem. Discrete and Continuous Dynamical Systems  B, 2007, 7 (4) : 859883. doi: 10.3934/dcdsb.2007.7.859 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]