March  2009, 4(1): 91-106. doi: 10.3934/nhm.2009.4.91

Tailored finite point method for the interface problem


Dept. of Mathematical Sciences, Tsinghua University, Beijing 100084

Received  July 2008 Revised  November 2008 Published  February 2009

In this paper, we propose a tailored-finite-point method for a numerical simulation of the second order elliptic equation with discontinuous coefficients. Our finite point method has been tailored to some particular properties of the problem, then we can get the approximate solution with the same behaviors as that of the exact solution very naturally. Especially, in one-dimensional case, when the coefficients are piecewise linear functions, we can get the exact solution with only one point in each subdomain. Furthermore, the stability analysis and the uniform convergence analysis in the energy norm are proved. On the other hand, our computational complexity is only $\O(N)$ for $N$ discrete points. We also extend our method to two-dimensional problems.
Citation: Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838


Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017


Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020196


Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867


Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105


Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231


Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489


Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768


Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323


Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213


Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347


Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141


So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343


Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73


Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639


Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051


Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371


Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020025


Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727


Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

2019 Impact Factor: 1.053


  • PDF downloads (27)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]