
Previous Article
G1/S transition and cell population dynamics
 NHM Home
 This Issue

Next Article
On fluidodynamic models for urban traffic
Tailored finite point method for the interface problem
1.  Dept. of Mathematical Sciences, Tsinghua University, Beijing 100084 
[1] 
Sheng Xu. Derivation of principal jump conditions for the immersed interface method in twofluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838845. doi: 10.3934/proc.2009.2009.838 
[2] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[3] 
Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems  B, 2006, 6 (4) : 867880. doi: 10.3934/dcdsb.2006.6.867 
[4] 
Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 21052133. doi: 10.3934/dcds.2014.34.2105 
[5] 
Runchang Lin, Huiqing Zhu. A discontinuous Galerkin leastsquares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489497. doi: 10.3934/proc.2013.2013.489 
[6] 
Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under sliptype boundary conditions.. Discrete & Continuous Dynamical Systems  S, 2010, 3 (2) : 231236. doi: 10.3934/dcdss.2010.3.231 
[7] 
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a nonlocal elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768778. doi: 10.3934/proc.2007.2007.768 
[8] 
Champike Attanayake, SoHsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems  B, 2015, 20 (2) : 323337. doi: 10.3934/dcdsb.2015.20.323 
[9] 
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213240. doi: 10.3934/cpaa.2006.5.213 
[10] 
Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 13471363. doi: 10.3934/dcds.2011.31.1347 
[11] 
Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 31373160. doi: 10.3934/cpaa.2019141 
[12] 
SoHsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 23432357. doi: 10.3934/dcdsb.2012.17.2343 
[13] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[14] 
Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the timedependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639667. doi: 10.3934/krm.2012.5.639 
[15] 
Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 10511074. doi: 10.3934/ipi.2013.7.1051 
[16] 
Yuri Trakhinin. On wellposedness of the plasmavacuum interface problem: the case of nonelliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13711399. doi: 10.3934/cpaa.2016.15.1371 
[17] 
Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initialboundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727744. doi: 10.3934/nhm.2013.8.727 
[18] 
Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 807823. doi: 10.3934/dcdsb.2007.7.807 
[19] 
Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A spacetime discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 35953622. doi: 10.3934/dcdsb.2017216 
[20] 
Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139151. doi: 10.3934/krm.2011.4.139 
2017 Impact Factor: 1.187
Tools
Metrics
Other articles
by authors
[Back to Top]