
Previous Article
Flows in porous media with erosion of the solid matrix
 NHM Home
 This Issue

Next Article
Improving on computation of homogenized coefficients in the periodic and quasiperiodic settings
A particle system in interaction with a rapidly varying environment: Mean field limits and applications
1.  Institut de Mathématiques de Toulouse, CNRS & Université de Toulouse, 31062 Toulouse cedex 9, France 
2.  Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6M8, Canada 
3.  Microsoft Reasearch, Roger Needham Building, 7 J J Thomson Avenue, Cambridge, CB3 0FB, United Kingdom 
We apply the results on particle systems to understand the behavior of computer networks where users access a shared resource using a distributed random Medium Access Control (MAC) algorithm. MAC algorithms are used in all Local Area Network (LAN), and have been notoriously difficult to analyze. Our analysis allows us to provide simple and explicit expressions of the network performance under such algorithms.
[1] 
SeungYeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A meanfield limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429468. doi: 10.3934/krm.2021011 
[2] 
Marco Di Francesco, Serikbolsyn Duisembay, Diogo Aguiar Gomes, Ricardo Ribeiro. Particle approximation of onedimensional MeanFieldGames with local interactions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 35693591. doi: 10.3934/dcds.2022025 
[3] 
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 131155. doi: 10.3934/dcds.2019006 
[4] 
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Meanfield analysis of a scaling MAC radio protocol. Journal of Industrial and Management Optimization, 2021, 17 (1) : 279297. doi: 10.3934/jimo.2019111 
[5] 
Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 38793900. doi: 10.3934/dcds.2015.35.3879 
[6] 
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The HessAppelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 19551981. doi: 10.3934/dcds.2018079 
[7] 
Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete and Continuous Dynamical Systems  B, 2016, 21 (9) : 30293052. doi: 10.3934/dcdsb.2016086 
[8] 
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 38973921. doi: 10.3934/dcds.2019157 
[9] 
Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 19591982. doi: 10.3934/cpaa.2012.11.1959 
[10] 
Sébastien Court. Stabilization of a fluidsolid system, by the deformation of the selfpropelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83118. doi: 10.3934/eect.2014.3.83 
[11] 
Sébastien Court. Stabilization of a fluidsolid system, by the deformation of the selfpropelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 5982. doi: 10.3934/eect.2014.3.59 
[12] 
Elisabetta Carlini, Francisco J. Silva. A semiLagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 42694292. doi: 10.3934/dcds.2015.35.4269 
[13] 
Chjan C. Lim. Extremal free energy in a simple mean field theory for a coupled Barotropic fluid  rotating sphere system. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 361386. doi: 10.3934/dcds.2007.19.361 
[14] 
Rong Yang, Li Chen. Meanfield limit for a collisionavoiding flocking system and the timeasymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381400. doi: 10.3934/krm.2014.7.381 
[15] 
Tian Chen, Zhen Wu. A general maximum principle for partially observed meanfield stochastic system with random jumps in progressive structure. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022012 
[16] 
Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 387396. doi: 10.3934/dcds.2004.10.387 
[17] 
Paweł Lubowiecki, Henryk Żołądek. The HessAppelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443467. doi: 10.3934/jgm.2012.4.443 
[18] 
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Openloop solvability for meanfield stochastic linear quadratic optimal control problems of Markov regimeswitching system. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021074 
[19] 
Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete and Continuous Dynamical Systems  B, 2015, 20 (5) : 13371354. doi: 10.3934/dcdsb.2015.20.1337 
[20] 
Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a timedependent selfconsistent field system: Analysis and computation. Kinetic and Related Models, 2017, 10 (1) : 263298. doi: 10.3934/krm.2017011 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]