
Previous Article
Electromagnetic circuits
 NHM Home
 This Issue

Next Article
Stars of vibrating strings: Switching boundary feedback stabilization
Spectrum and dynamical behavior of a kind of planar network of nonuniform strings with noncollocated feedbacks
1.  Department of Mathematics, Tianjin University, Tianjin 300072, China, China 
[1] 
ZhongJie Han, GenQi Xu. Exponential decay in nonuniform porousthermoelasticity model of LordShulman type. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 5777. doi: 10.3934/dcdsb.2012.17.57 
[2] 
Boris Kalinin, Victoria Sadovskaya. Normal forms for nonuniform contractions. Journal of Modern Dynamics, 2017, 11: 341368. doi: 10.3934/jmd.2017014 
[3] 
Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 589607. doi: 10.3934/dcds.2010.27.589 
[4] 
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reactiondiffusionODE system with hysteresis in nonuniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 31093140. doi: 10.3934/dcds.2020400 
[5] 
Pablo G. Barrientos, Abbas Fakhari. Ergodicity of nonautonomous discrete systems with nonuniform expansion. Discrete & Continuous Dynamical Systems  B, 2020, 25 (4) : 13611382. doi: 10.3934/dcdsb.2019231 
[6] 
Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a starshaped network of EulerBernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723747. doi: 10.3934/nhm.2008.3.723 
[7] 
Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of nonuniform sign. Inverse Problems & Imaging, 2019, 13 (5) : 10071021. doi: 10.3934/ipi.2019045 
[8] 
Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a nonuniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 30873104. doi: 10.3934/dcdsb.2014.19.3087 
[9] 
Hai Huyen Dam, WingKuen Ling. Optimal design of finite precision and infinite precision nonuniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97112. doi: 10.3934/jimo.2018034 
[10] 
ZhongJie Han, GenQi Xu. Dynamical behavior of networks of nonuniform Timoshenko beams system with boundary timedelay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297327. doi: 10.3934/nhm.2011.6.297 
[11] 
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multiscale model of dilute emulsions with nonuniform surface tension. Discrete & Continuous Dynamical Systems  S, 2016, 9 (5) : 15531564. doi: 10.3934/dcdss.2016062 
[12] 
Alexander Zlotnik. The NumerovCrankNicolson scheme on a nonuniform mesh for the timedependent Schrödinger equation on the halfaxis. Kinetic & Related Models, 2015, 8 (3) : 587613. doi: 10.3934/krm.2015.8.587 
[13] 
Victor Churchill, Rick Archibald, Anne Gelb. Edgeadaptive $ \ell_2 $ regularization image reconstruction from nonuniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931958. doi: 10.3934/ipi.2019042 
[14] 
Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponentialtype functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems  S, 2021, 14 (7) : 23992416. doi: 10.3934/dcdss.2020403 
[15] 
Xu Xu, Xin Zhao. Exponential upper bounds on the spectral gaps and homogeneous spectrum for the noncritical extended Harper's model. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 47774800. doi: 10.3934/dcds.2020201 
[16] 
Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in nonautonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 517536. doi: 10.3934/dcds.2007.18.517 
[17] 
Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible nonNewtonian fluid with delay. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 42854303. doi: 10.3934/dcdsb.2018138 
[18] 
Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control & Related Fields, 2019, 9 (3) : 453494. doi: 10.3934/mcrf.2019021 
[19] 
Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 4049. doi: 10.3934/proc.2005.2005.40 
[20] 
Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a RaoNakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365375. doi: 10.3934/proc.2005.2005.365 
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]