September  2010, 5(3): 405-422. doi: 10.3934/nhm.2010.5.405

A 2-adic approach of the human respiratory tree

1. 

Laboratoire Paul Painlevé - CNRS, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France

2. 

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud 11, 91405 Orsay Cedex

3. 

Institut Jacques Monod, Université Paris Diderot, Bât. Buffon, 15 rue Hélène Brion, 75013 Paris, France

Received  January 2010 Revised  April 2010 Published  July 2010

We propose here a general framework to address the question of trace operators on a dyadic tree. This work is motivated by the modeling of the human bronchial tree which, thanks to its regularity, can be extrapolated in a natural way to an infinite resistive tree. The space of pressure fields at bifurcation nodes of this infinite tree can be endowed with a Sobolev space structure, with a semi-norm which measures the instantaneous rate of dissipated energy. We aim at describing the behaviour of finite energy pressure fields near the end. The core of the present approach is an identification of the set of ends with the ring $\ZZ$2 of 2-adic integers. Sobolev spaces over $\ZZ$2 can be defined in a very natural way by means of Fourier transform, which allows us to establish precised trace theorems which are formally quite similar to those in standard Sobolev spaces, with a Sobolev regularity which depends on the growth rate of resistances, i.e. on geometrical properties of the tree. Furthermore, we exhibit an explicit expression of the "ventilation operator'', which maps pressure fields at the end of the tree onto fluxes, in the form of a convolution by a Riesz kernel based on the 2-adic distance.
Citation: Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405
[1]

Shiping Cao, Shuangping Li, Robert S. Strichartz, Prem Talwai. A trace theorem for Sobolev spaces on the Sierpinski gasket. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3901-3916. doi: 10.3934/cpaa.2020159

[2]

Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018

[3]

Bertrand Maury, Delphine Salort, Christine Vannier. Trace theorems for trees and application to the human lungs. Networks & Heterogeneous Media, 2009, 4 (3) : 469-500. doi: 10.3934/nhm.2009.4.469

[4]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[5]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[6]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[7]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[8]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[9]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[10]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[11]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[12]

Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155

[13]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[14]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020365

[15]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[16]

Rowan Killip, Satoshi Masaki, Jason Murphy, Monica Visan. The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 553-583. doi: 10.3934/dcds.2019023

[17]

Jongkeun Choi, Hongjie Dong, Doyoon Kim. Conormal derivative problems for stationary Stokes system in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2349-2374. doi: 10.3934/dcds.2018097

[18]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[19]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[20]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

[Back to Top]