September  2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635

On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types

1. 

Laboratoire JLL, Université Pierre et Marie Curie, Boîte courrier 187, 4 place Jussieu, 75952 PARIS Cedex 05, France

Received  January 2010 Revised  April 2010 Published  July 2010

We consider a simplified model for two-phase flows in one- dimensional heterogeneous porous media made of two different rocks. We focus on the effects induced by the discontinuity of the capillarity field at interface. We first consider a model with capillarity forces within the rocks, stating an existence/uniqueness result. Then we look for the asymptotic problem for vanishing capillarity within the rocks, remaining only on the interface. We show that either the solution to the asymptotic problem is the optimal entropy solution to a scalar conservation law with discontinuous flux, or it admits a non-classical shock at the interface modeling oil-trapping.
Citation: Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks & Heterogeneous Media, 2010, 5 (3) : 635-647. doi: 10.3934/nhm.2010.5.635
[1]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[2]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[3]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[4]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[5]

Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163

[6]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[7]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[8]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[9]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[10]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[11]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[12]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[13]

Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic & Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059

[14]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[15]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[16]

Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks & Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015

[17]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[18]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[19]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[20]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]