\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Coupling conditions for the $3\times 3$ Euler system

Abstract Related Papers Cited by
  • This paper is devoted to the extension to the full $3\times3$ Euler system of the basic analytical properties of the equations governing a fluid flowing in a duct with varying section. First, we consider the Cauchy problem for a pipeline consisting of 2 ducts joined at a junction. Then, this result is extended to more complex pipes. A key assumption in these theorems is the boundedness of the total variation of the pipe's section. We provide explicit examples to show that this bound is necessary.
    Mathematics Subject Classification: Primary: 35L65; secondary: 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic).

    [2]

    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic).

    [3]

    A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press, Oxford, 2000.

    [4]

    R. M. Colombo and M. Garavello, On the $p$-system at a junction, in "Control Methods in Pde-Dynamical Systems," volume 426 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2007), 193-217.

    [5]

    R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction, preprint, (2009).

    [6]

    R. M. Colombo and G. Guerra, On general balance laws with boundary, J. Diff. Equations, 248 (2010), 1017-1043.doi: 10.1016/j.jde.2009.12.002.

    [7]

    R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050.

    [8]

    R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.doi: 10.1137/070690298.

    [9]

    R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, J. Math. Anal. Appl., 361 (2010), 440-456.doi: 10.1016/j.jmaa.2009.07.022.

    [10]

    R. M. Colombo and C. Mauri, Euler system at a junction, Journal of Hyperbolic Differential Equations, 5 (2008), 547-568.doi: 10.1142/S0219891608001593.

    [11]

    M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

    [12]

    P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.doi: 10.1016/j.anihpc.2004.02.002.

    [13]

    G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source, SIAM J. Math. Anal., 41 (2009), 1164-1189.doi: 10.1137/080735436.

    [14]

    H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic).doi: 10.1137/S0036141097327033.

    [15]

    T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.doi: 10.1007/BF01976043.

    [16]

    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Second edition, Springer-Verlag, New York, 1994.

    [17]

    G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons Inc., New York, 1999, reprint of the 1974 original, A Wiley-Interscience Publication.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return