-
Previous Article
Classical solutions and feedback stabilization for the gas flow in a sequence of pipes
- NHM Home
- This Issue
- Next Article
Coupling conditions for the $3\times 3$ Euler system
1. | Dipartimento di Matematica, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy |
2. | Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Via Cozzi 53, 20126 Milano, Italy |
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic). |
[2] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic). |
[3] |
A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press, Oxford, 2000. |
[4] |
R. M. Colombo and M. Garavello, On the $p$-system at a junction, in "Control Methods in Pde-Dynamical Systems," volume 426 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2007), 193-217. |
[5] |
R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction, preprint, (2009). |
[6] |
R. M. Colombo and G. Guerra, On general balance laws with boundary, J. Diff. Equations, 248 (2010), 1017-1043.
doi: 10.1016/j.jde.2009.12.002. |
[7] |
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. |
[8] |
R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[9] |
R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, J. Math. Anal. Appl., 361 (2010), 440-456.
doi: 10.1016/j.jmaa.2009.07.022. |
[10] |
R. M. Colombo and C. Mauri, Euler system at a junction, Journal of Hyperbolic Differential Equations, 5 (2008), 547-568.
doi: 10.1142/S0219891608001593. |
[11] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[12] |
P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.
doi: 10.1016/j.anihpc.2004.02.002. |
[13] |
G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source, SIAM J. Math. Anal., 41 (2009), 1164-1189.
doi: 10.1137/080735436. |
[14] |
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic).
doi: 10.1137/S0036141097327033. |
[15] |
T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[16] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Second edition, Springer-Verlag, New York, 1994. |
[17] |
G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons Inc., New York, 1999, reprint of the 1974 original, A Wiley-Interscience Publication. |
show all references
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic). |
[2] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic). |
[3] |
A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press, Oxford, 2000. |
[4] |
R. M. Colombo and M. Garavello, On the $p$-system at a junction, in "Control Methods in Pde-Dynamical Systems," volume 426 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2007), 193-217. |
[5] |
R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction, preprint, (2009). |
[6] |
R. M. Colombo and G. Guerra, On general balance laws with boundary, J. Diff. Equations, 248 (2010), 1017-1043.
doi: 10.1016/j.jde.2009.12.002. |
[7] |
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. |
[8] |
R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[9] |
R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, J. Math. Anal. Appl., 361 (2010), 440-456.
doi: 10.1016/j.jmaa.2009.07.022. |
[10] |
R. M. Colombo and C. Mauri, Euler system at a junction, Journal of Hyperbolic Differential Equations, 5 (2008), 547-568.
doi: 10.1142/S0219891608001593. |
[11] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[12] |
P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.
doi: 10.1016/j.anihpc.2004.02.002. |
[13] |
G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source, SIAM J. Math. Anal., 41 (2009), 1164-1189.
doi: 10.1137/080735436. |
[14] |
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic).
doi: 10.1137/S0036141097327033. |
[15] |
T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[16] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Second edition, Springer-Verlag, New York, 1994. |
[17] |
G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons Inc., New York, 1999, reprint of the 1974 original, A Wiley-Interscience Publication. |
[1] |
Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008 |
[2] |
Laurent Bourgeois, Jean-François Fritsch, Arnaud Recoquillay. Imaging junctions of waveguides. Inverse Problems and Imaging, 2021, 15 (2) : 285-314. doi: 10.3934/ipi.2020065 |
[3] |
Luis A. Caffarelli, Fang Hua Lin. Analysis on the junctions of domain walls. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 915-929. doi: 10.3934/dcds.2010.28.915 |
[4] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[5] |
Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969 |
[6] |
Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions. Mathematical Biosciences & Engineering, 2011, 8 (4) : 915-930. doi: 10.3934/mbe.2011.8.915 |
[7] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[8] |
Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227 |
[9] |
Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012 |
[10] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[11] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[12] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[13] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[14] |
Cyril Imbert, Régis Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6405-6435. doi: 10.3934/dcds.2017278 |
[15] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[16] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[17] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[18] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[19] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[20] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]