December  2010, 5(4): 675-690. doi: 10.3934/nhm.2010.5.675

Coupling conditions for the $3\times 3$ Euler system

1. 

Dipartimento di Matematica, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Via Cozzi 53, 20126 Milano, Italy

Received  November 2009 Revised  May 2010 Published  November 2010

This paper is devoted to the extension to the full $3\times3$ Euler system of the basic analytical properties of the equations governing a fluid flowing in a duct with varying section. First, we consider the Cauchy problem for a pipeline consisting of 2 ducts joined at a junction. Then, this result is extended to more complex pipes. A key assumption in these theorems is the boundedness of the total variation of the pipe's section. We provide explicit examples to show that this bound is necessary.
Citation: Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks & Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.   Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.   Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications \textbf{20}, 20 (2000).   Google Scholar

[4]

R. M. Colombo and M. Garavello, On the $p$-system at a junction,, in, 426 (2007), 193.   Google Scholar

[5]

R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction,, preprint, (2009).   Google Scholar

[6]

R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Diff. Equations, 248 (2010), 1017.  doi: 10.1016/j.jde.2009.12.002.  Google Scholar

[7]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals,, SIAM J. Math. Anal., 48 (2009), 2032.   Google Scholar

[8]

R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.  doi: 10.1137/070690298.  Google Scholar

[9]

R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, J. Math. Anal. Appl., 361 (2010), 440.  doi: 10.1016/j.jmaa.2009.07.022.  Google Scholar

[10]

R. M. Colombo and C. Mauri, Euler system at a junction,, Journal of Hyperbolic Differential Equations, 5 (2008), 547.  doi: 10.1142/S0219891608001593.  Google Scholar

[11]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics \textbf{1}, 1 (2006).   Google Scholar

[12]

P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881.  doi: 10.1016/j.anihpc.2004.02.002.  Google Scholar

[13]

G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source,, SIAM J. Math. Anal., 41 (2009), 1164.  doi: 10.1137/080735436.  Google Scholar

[14]

H. Holden and N. H. Risebro, Riemann problems with a kink,, SIAM J. Math. Anal., 30 (1999), 497.  doi: 10.1137/S0036141097327033.  Google Scholar

[15]

T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle,, Comm. Math. Phys., 83 (1982), 243.  doi: 10.1007/BF01976043.  Google Scholar

[16]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Second edition, (1994).   Google Scholar

[17]

G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons Inc., (1999).   Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.   Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.   Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications \textbf{20}, 20 (2000).   Google Scholar

[4]

R. M. Colombo and M. Garavello, On the $p$-system at a junction,, in, 426 (2007), 193.   Google Scholar

[5]

R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction,, preprint, (2009).   Google Scholar

[6]

R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Diff. Equations, 248 (2010), 1017.  doi: 10.1016/j.jde.2009.12.002.  Google Scholar

[7]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals,, SIAM J. Math. Anal., 48 (2009), 2032.   Google Scholar

[8]

R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.  doi: 10.1137/070690298.  Google Scholar

[9]

R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, J. Math. Anal. Appl., 361 (2010), 440.  doi: 10.1016/j.jmaa.2009.07.022.  Google Scholar

[10]

R. M. Colombo and C. Mauri, Euler system at a junction,, Journal of Hyperbolic Differential Equations, 5 (2008), 547.  doi: 10.1142/S0219891608001593.  Google Scholar

[11]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics \textbf{1}, 1 (2006).   Google Scholar

[12]

P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881.  doi: 10.1016/j.anihpc.2004.02.002.  Google Scholar

[13]

G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source,, SIAM J. Math. Anal., 41 (2009), 1164.  doi: 10.1137/080735436.  Google Scholar

[14]

H. Holden and N. H. Risebro, Riemann problems with a kink,, SIAM J. Math. Anal., 30 (1999), 497.  doi: 10.1137/S0036141097327033.  Google Scholar

[15]

T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle,, Comm. Math. Phys., 83 (1982), 243.  doi: 10.1007/BF01976043.  Google Scholar

[16]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Second edition, (1994).   Google Scholar

[17]

G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons Inc., (1999).   Google Scholar

[1]

Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008

[2]

Luis A. Caffarelli, Fang Hua Lin. Analysis on the junctions of domain walls. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 915-929. doi: 10.3934/dcds.2010.28.915

[3]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[4]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[5]

Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions. Mathematical Biosciences & Engineering, 2011, 8 (4) : 915-930. doi: 10.3934/mbe.2011.8.915

[6]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[7]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[8]

Cyril Imbert, Régis Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6405-6435. doi: 10.3934/dcds.2017278

[9]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[10]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[11]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[12]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[13]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[14]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[15]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[16]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[17]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[18]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[19]

Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i

[20]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]