• Previous Article
    Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients
  • NHM Home
  • This Issue
  • Next Article
    Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel
December  2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765

Groundwater flow in a fissurised porous stratum

1. 

Istituto per le Applicazioni del Calcolo "M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Roma

2. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, Monte S. Angelo, I-80126 Napoli, Italy

Received  February 2010 Published  November 2010

In [2] Barenblatt e.a. introduced a fluid model for groundwater flow in fissurised porous media. The system consists of two diffusion equations for the groundwater levels in, respectively, the porous bulk and the system of cracks. The equations are coupled by a fluid exchange term. Numerical evidence in [2, 8] suggests that the penetration depth of the fluid increases dramatically due to the presence of cracks and that the smallness of certain parameter values play a key role in this phenomenon. In the present paper we give precise estimates for the penetration depth in terms of the smallness of some of the parameters.
Citation: Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum. Networks & Heterogeneous Media, 2010, 5 (4) : 765-782. doi: 10.3934/nhm.2010.5.765
References:
[1]

G. I. Barenblatt, On some unsteady motions in a liquid or a gas in a porous medium,, Prikladnaja Matematika i Mechanika, 16 (1952), 67.

[2]

G. I. Barenblatt, E. A. Ingerman, H. Shvets and J. L. Vázquez, Very intense pulse in the gorundwater flow in fissurised-porous stratum,, PNAS, 97 (2000), 1366. doi: 10.1073/pnas.97.4.1366.

[3]

M. Bertsch, R. Dal Passo and C. Nitsch, A system of degenerate parabolic nonlinear pde's: A new free boundary problem,, Interfaces Free Bound, 7 (2005), 255.

[4]

K. N. Chuen, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373. doi: 10.1512/iumj.1977.26.26029.

[5]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomena for thin film equations,, Ann. Scuola Norm. Sup. Pisa (4), 30 (2001), 437.

[6]

R. Dal Passo, L. Giacomelli and G. Grün, "Waiting Time Phenomena for Degenerate Parabolic Equations - A Unifying Approach,", in, (2003), 637.

[7]

R. Kersner, Nonlinear heat conduction with absorption: Space localization and extinction in finite time,, SIAM J. Appl. Math., 43 (1983), 1274. doi: 10.1137/0143085.

[8]

Y. Shvets, "Problems of Flooding in Porous and Fissured Porous Rock,", Ph.D. thesis, (2005).

[9]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.

[10]

G. Stampacchia, "Équationes Elliptiques Du Second Ordre à Coefficients Discontinus,", Les presses de l'université de Montréal, (1966).

[11]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).

show all references

References:
[1]

G. I. Barenblatt, On some unsteady motions in a liquid or a gas in a porous medium,, Prikladnaja Matematika i Mechanika, 16 (1952), 67.

[2]

G. I. Barenblatt, E. A. Ingerman, H. Shvets and J. L. Vázquez, Very intense pulse in the gorundwater flow in fissurised-porous stratum,, PNAS, 97 (2000), 1366. doi: 10.1073/pnas.97.4.1366.

[3]

M. Bertsch, R. Dal Passo and C. Nitsch, A system of degenerate parabolic nonlinear pde's: A new free boundary problem,, Interfaces Free Bound, 7 (2005), 255.

[4]

K. N. Chuen, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373. doi: 10.1512/iumj.1977.26.26029.

[5]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomena for thin film equations,, Ann. Scuola Norm. Sup. Pisa (4), 30 (2001), 437.

[6]

R. Dal Passo, L. Giacomelli and G. Grün, "Waiting Time Phenomena for Degenerate Parabolic Equations - A Unifying Approach,", in, (2003), 637.

[7]

R. Kersner, Nonlinear heat conduction with absorption: Space localization and extinction in finite time,, SIAM J. Appl. Math., 43 (1983), 1274. doi: 10.1137/0143085.

[8]

Y. Shvets, "Problems of Flooding in Porous and Fissured Porous Rock,", Ph.D. thesis, (2005).

[9]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.

[10]

G. Stampacchia, "Équationes Elliptiques Du Second Ordre à Coefficients Discontinus,", Les presses de l'université de Montréal, (1966).

[11]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).

[1]

Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481

[2]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[3]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[4]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[5]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[6]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[7]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[8]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[9]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019061

[10]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[11]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[12]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

[13]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure & Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[14]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[15]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[16]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

[17]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[18]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[19]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021

[20]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]