December  2010, 5(4): 813-847. doi: 10.3934/nhm.2010.5.813

Mathematical and numerical analysis for Predator-prey system in a polluted environment

1. 

Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

2. 

Institut de Mathématiques de Bordeaux, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France

3. 

CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción

Received  January 2010 Revised  April 2010 Published  November 2010

In this paper, we prove existence results for a Predator-prey system in a polluted environment. The existence result is proved by the Schauder fixed-point theorem. Moreover, we construct a combined finite volume - finite element scheme to our model, we establish existence of discrete solutions to this scheme, and show that it converges to a weak solution. The convergence proof is based on deriving series of a priori estimates and using a general $L^p$ compactness criterion. Finally we give some numerical examples.
Citation: Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks & Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813
References:
[1]

A. S. Ackleh and L. Ke, Existence-uniqueness and long time behavior for a class on nonlocal nonlinear parabolic evolution equations,, Proc. Amer. Math. Soc., 128 (2000), 3483.  doi: 10.1090/S0002-9939-00-05912-8.  Google Scholar

[2]

V. Anaya, M. Bendahmane and M. Sepúlveda, Mathematical and numerical analysis for reaction-diffusion systems modeling the spread of early tumors,, Bol. Soc. Esp. Mat. Apl., (2009), 55.   Google Scholar

[3]

V. Anaya, M. Bendahmane and M. Sepúlveda, A numerical analysis of a reaction-diffusion system modelling the dynamics of growth tumors,, Math. Models Methods Appl. Sci., 20 (2010), 731.  doi: 10.1142/S0218202510004428.  Google Scholar

[4]

B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis,, Nonlinear Anal. Real World Appl., 128 (2008), 2086.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[5]

L. Bai and K. Wang, A diffusive stage-structured model in a polluted environment,, Nonlinear Anal. Real World Appl., 7 (2006), 96.  doi: 10.1016/j.nonrwa.2004.11.010.  Google Scholar

[6]

M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect,, Math. Models Methods Appl. Sci., 17 (2007), 783.  doi: 10.1142/S0218202507002108.  Google Scholar

[7]

M. Bendahmane and M. Sepúlveda, Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease,, Discrete Contin. Dyn. Syst. Ser. B, (2009), 823.  doi: 10.3934/dcdsb.2009.11.823.  Google Scholar

[8]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problem,, Nonlinear Anal., 30 (1997), 4619.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[9]

B. Dubey and J. Hussain, Modelling the interaction of two biological species in a polluted environment,, J. Math. Anal. Appl., 246 (2000), 58.  doi: 10.1006/jmaa.2000.6741.  Google Scholar

[10]

B. Dubey and J. Hussain, Models for the effect of environmental pollution on forestry resources with time delay,, Nonlinear Anal. Real World Appl., 5 (2004), 549.  doi: 10.1016/j.nonrwa.2004.01.001.  Google Scholar

[11]

R. Eymard, Th. Gallouët and R. Herbin, "Finite Volume Methods. Handbook of Numerical Analysis,", vol. VII, VII (2000).   Google Scholar

[12]

R. Eymard, D. Hilhorst and M. Vohralík, A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems,, Numer. Math., 105 (2006), 73.  doi: 10.1007/s00211-006-0036-z.  Google Scholar

[13]

H. I. Freedman and J. B. Shukla, Models for the effects of toxicant in single-species and predator-prey systems,, J. Math. Biol., 30 (1991), 15.  doi: 10.1007/BF00168004.  Google Scholar

[14]

T. G. Hallam, C. E. Clark and R. R. Lassider, Effects of toxicants on populations: A qualitative approach I. Equilibrium environment exposured,, Ecol. Model, 18 (1983), 291.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[15]

T. G. Hallam, C. E. Clark and G. S Jordan, Effects of toxicants on populations: A qualitative approach II. First order kinetics,, J. Math. Biol., 18 (1983), 25.   Google Scholar

[16]

T. G. Hallam and J. T. De Luna, Effects of toxicants on populations: A qualitative approach III. Environment and food chains pathways,, J. Theor. Biol., 109 (1984), 11.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[18]

C. A. Raposo, M. Sepúlveda, O. Vera, D. Carvalho Pereira and M. Lima Santos, Solution and asymptotic behavior for a nonlocal coupled system of reaction-diffusion,, Acta Appl. Math. 102 (2008), 102 (2008), 37.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[19]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[20]

J. B. Shukla and B. Dubey, Simultaneous effect of two toxicants on biological species: A mathematical model,, J. Biol. Syst., 4 (1996), 109.  doi: 10.1142/S0218339096000090.  Google Scholar

[21]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 3rd revised edition, (2001).   Google Scholar

[22]

M. Vohralik, "Numerical Methods for Nonlinear Elliptic and Parabolic Equations. Application to Flow Problems in Porous and Fractured Media,", Ph.D. dissertation, (2004).   Google Scholar

[23]

X. Yang, Z. Jin and Y. Xue, Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input,, Chaos Solitons Fractals, 31 (2007), 726.  doi: 10.1016/j.chaos.2005.10.042.  Google Scholar

[24]

K. Yosida, "Functional Analysis and its Applications,", New York, (1971).   Google Scholar

show all references

References:
[1]

A. S. Ackleh and L. Ke, Existence-uniqueness and long time behavior for a class on nonlocal nonlinear parabolic evolution equations,, Proc. Amer. Math. Soc., 128 (2000), 3483.  doi: 10.1090/S0002-9939-00-05912-8.  Google Scholar

[2]

V. Anaya, M. Bendahmane and M. Sepúlveda, Mathematical and numerical analysis for reaction-diffusion systems modeling the spread of early tumors,, Bol. Soc. Esp. Mat. Apl., (2009), 55.   Google Scholar

[3]

V. Anaya, M. Bendahmane and M. Sepúlveda, A numerical analysis of a reaction-diffusion system modelling the dynamics of growth tumors,, Math. Models Methods Appl. Sci., 20 (2010), 731.  doi: 10.1142/S0218202510004428.  Google Scholar

[4]

B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis,, Nonlinear Anal. Real World Appl., 128 (2008), 2086.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[5]

L. Bai and K. Wang, A diffusive stage-structured model in a polluted environment,, Nonlinear Anal. Real World Appl., 7 (2006), 96.  doi: 10.1016/j.nonrwa.2004.11.010.  Google Scholar

[6]

M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect,, Math. Models Methods Appl. Sci., 17 (2007), 783.  doi: 10.1142/S0218202507002108.  Google Scholar

[7]

M. Bendahmane and M. Sepúlveda, Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease,, Discrete Contin. Dyn. Syst. Ser. B, (2009), 823.  doi: 10.3934/dcdsb.2009.11.823.  Google Scholar

[8]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problem,, Nonlinear Anal., 30 (1997), 4619.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[9]

B. Dubey and J. Hussain, Modelling the interaction of two biological species in a polluted environment,, J. Math. Anal. Appl., 246 (2000), 58.  doi: 10.1006/jmaa.2000.6741.  Google Scholar

[10]

B. Dubey and J. Hussain, Models for the effect of environmental pollution on forestry resources with time delay,, Nonlinear Anal. Real World Appl., 5 (2004), 549.  doi: 10.1016/j.nonrwa.2004.01.001.  Google Scholar

[11]

R. Eymard, Th. Gallouët and R. Herbin, "Finite Volume Methods. Handbook of Numerical Analysis,", vol. VII, VII (2000).   Google Scholar

[12]

R. Eymard, D. Hilhorst and M. Vohralík, A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems,, Numer. Math., 105 (2006), 73.  doi: 10.1007/s00211-006-0036-z.  Google Scholar

[13]

H. I. Freedman and J. B. Shukla, Models for the effects of toxicant in single-species and predator-prey systems,, J. Math. Biol., 30 (1991), 15.  doi: 10.1007/BF00168004.  Google Scholar

[14]

T. G. Hallam, C. E. Clark and R. R. Lassider, Effects of toxicants on populations: A qualitative approach I. Equilibrium environment exposured,, Ecol. Model, 18 (1983), 291.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[15]

T. G. Hallam, C. E. Clark and G. S Jordan, Effects of toxicants on populations: A qualitative approach II. First order kinetics,, J. Math. Biol., 18 (1983), 25.   Google Scholar

[16]

T. G. Hallam and J. T. De Luna, Effects of toxicants on populations: A qualitative approach III. Environment and food chains pathways,, J. Theor. Biol., 109 (1984), 11.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[18]

C. A. Raposo, M. Sepúlveda, O. Vera, D. Carvalho Pereira and M. Lima Santos, Solution and asymptotic behavior for a nonlocal coupled system of reaction-diffusion,, Acta Appl. Math. 102 (2008), 102 (2008), 37.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[19]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[20]

J. B. Shukla and B. Dubey, Simultaneous effect of two toxicants on biological species: A mathematical model,, J. Biol. Syst., 4 (1996), 109.  doi: 10.1142/S0218339096000090.  Google Scholar

[21]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 3rd revised edition, (2001).   Google Scholar

[22]

M. Vohralik, "Numerical Methods for Nonlinear Elliptic and Parabolic Equations. Application to Flow Problems in Porous and Fractured Media,", Ph.D. dissertation, (2004).   Google Scholar

[23]

X. Yang, Z. Jin and Y. Xue, Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input,, Chaos Solitons Fractals, 31 (2007), 726.  doi: 10.1016/j.chaos.2005.10.042.  Google Scholar

[24]

K. Yosida, "Functional Analysis and its Applications,", New York, (1971).   Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[8]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

[Back to Top]