-
Previous Article
On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model
- NHM Home
- This Issue
-
Next Article
Non-standard dynamics of elastic composites
Homogenization of convection-diffusion equation in infinite cylinder
1. | Narvik University College, Postbox 385, 8505 Narvik, Norway |
2. | Narvik University College, HiN, Postbox 385, 8505 Narvik, Norway, and, P.N. Lebedev Physical Institute RAS, Leninski prospect, 53, Moscow, 117924 |
References:
[1] |
G. Allaire and A. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, (English, French summary) C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528. |
[2] |
D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122.
doi: 10.1007/BF00281291. |
[3] |
D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 607-694. |
[4] |
N. S. Bakhvalov and G. P. Panasenko, "Homogenization: Averaging Processes in Periodic Media," Kluwer, Dordrecht/Boston/London, 1989. |
[5] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structure," Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978. |
[6] |
P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms, Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24 (2005), 153-165. |
[7] |
M. V. Kozlova and G. P. Panasenko, Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod, Comput. Math. Math. Phys., 31 (1992), 128-131. |
[8] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1967. |
[9] |
I. Pankratova and A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder, DCDS-B, 11 (2009), 935-970.
doi: 10.3934/dcdsb.2009.11.935. |
[10] |
L. Trabucho and J. M. Viaño, Derivation of generalized models for linear elastic beams by asymptotic expansion methods, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315. |
[11] |
Z. Tutek, A homogenized model of rod in linear elasticity, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315. |
[12] |
V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer-Verlag, Berlin, 1994. |
[13] |
V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), 973-1014.
doi: 10.1070/SM2000v191n07ABEH000491. |
show all references
References:
[1] |
G. Allaire and A. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, (English, French summary) C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528. |
[2] |
D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122.
doi: 10.1007/BF00281291. |
[3] |
D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 607-694. |
[4] |
N. S. Bakhvalov and G. P. Panasenko, "Homogenization: Averaging Processes in Periodic Media," Kluwer, Dordrecht/Boston/London, 1989. |
[5] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structure," Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978. |
[6] |
P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms, Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24 (2005), 153-165. |
[7] |
M. V. Kozlova and G. P. Panasenko, Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod, Comput. Math. Math. Phys., 31 (1992), 128-131. |
[8] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1967. |
[9] |
I. Pankratova and A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder, DCDS-B, 11 (2009), 935-970.
doi: 10.3934/dcdsb.2009.11.935. |
[10] |
L. Trabucho and J. M. Viaño, Derivation of generalized models for linear elastic beams by asymptotic expansion methods, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315. |
[11] |
Z. Tutek, A homogenized model of rod in linear elasticity, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315. |
[12] |
V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer-Verlag, Berlin, 1994. |
[13] |
V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), 973-1014.
doi: 10.1070/SM2000v191n07ABEH000491. |
[1] |
Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 |
[2] |
Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063 |
[3] |
Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133 |
[4] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[5] |
Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575 |
[6] |
Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 |
[7] |
Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373 |
[8] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[9] |
M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525 |
[10] |
Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471 |
[11] |
Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 |
[12] |
Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309 |
[13] |
Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663 |
[14] |
Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085 |
[15] |
Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325 |
[16] |
Antti Lipponen, Aku Seppänen, Jari Hämäläinen, Jari P. Kaipio. Nonstationary inversion of convection-diffusion problems - recovery from unknown nonstationary velocity fields. Inverse Problems and Imaging, 2010, 4 (3) : 463-483. doi: 10.3934/ipi.2010.4.463 |
[17] |
Catherine Choquet, Marie-Christine Néel. From particles scale to anomalous or classical convection-diffusion models with path integrals. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 207-238. doi: 10.3934/dcdss.2014.7.207 |
[18] |
Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493 |
[19] |
Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669 |
[20] |
Tomás Caraballo, Antonio M. Márquez-Durán, Rivero Felipe. Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1817-1833. doi: 10.3934/dcdsb.2017108 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]