-
Previous Article
On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model
- NHM Home
- This Issue
-
Next Article
Non-standard dynamics of elastic composites
Homogenization of convection-diffusion equation in infinite cylinder
1. | Narvik University College, Postbox 385, 8505 Narvik, Norway |
2. | Narvik University College, HiN, Postbox 385, 8505 Narvik, Norway, and, P.N. Lebedev Physical Institute RAS, Leninski prospect, 53, Moscow, 117924 |
References:
[1] |
G. Allaire and A. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, (English, French summary), C. R. Math. Acad. Sci. Paris, 344 (2007), 523.
|
[2] |
D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations,, Arch. Rational Mech. Anal., 25 (1967), 81.
doi: 10.1007/BF00281291. |
[3] |
D. G. Aronson, Non-negative solutions of linear parabolic equations,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 607.
|
[4] |
N. S. Bakhvalov and G. P. Panasenko, "Homogenization: Averaging Processes in Periodic Media,", Kluwer, (1989).
|
[5] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structure,", Studies in Mathematics and its Applications, (1978).
|
[6] |
P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms,, Multi Scale Problems and Asymptotic Analysis, 24 (2005), 153.
|
[7] |
M. V. Kozlova and G. P. Panasenko, Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod,, Comput. Math. Math. Phys., 31 (1992), 128.
|
[8] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).
|
[9] |
I. Pankratova and A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder,, DCDS-B, 11 (2009), 935.
doi: 10.3934/dcdsb.2009.11.935. |
[10] |
L. Trabucho and J. M. Viaño, Derivation of generalized models for linear elastic beams by asymptotic expansion methods,, Applications of multiple scaling in mechanis (Paris, 4 (1987), 302.
|
[11] |
Z. Tutek, A homogenized model of rod in linear elasticity,, Applications of multiple scaling in mechanis (Paris, 4 (1987), 302.
|
[12] |
V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,", Springer-Verlag, (1994).
|
[13] |
V. V. Zhikov, On an extension and an application of the two-scale convergence method,, Sb. Math., 191 (2000), 973.
doi: 10.1070/SM2000v191n07ABEH000491. |
show all references
References:
[1] |
G. Allaire and A. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, (English, French summary), C. R. Math. Acad. Sci. Paris, 344 (2007), 523.
|
[2] |
D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations,, Arch. Rational Mech. Anal., 25 (1967), 81.
doi: 10.1007/BF00281291. |
[3] |
D. G. Aronson, Non-negative solutions of linear parabolic equations,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 607.
|
[4] |
N. S. Bakhvalov and G. P. Panasenko, "Homogenization: Averaging Processes in Periodic Media,", Kluwer, (1989).
|
[5] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structure,", Studies in Mathematics and its Applications, (1978).
|
[6] |
P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms,, Multi Scale Problems and Asymptotic Analysis, 24 (2005), 153.
|
[7] |
M. V. Kozlova and G. P. Panasenko, Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod,, Comput. Math. Math. Phys., 31 (1992), 128.
|
[8] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).
|
[9] |
I. Pankratova and A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder,, DCDS-B, 11 (2009), 935.
doi: 10.3934/dcdsb.2009.11.935. |
[10] |
L. Trabucho and J. M. Viaño, Derivation of generalized models for linear elastic beams by asymptotic expansion methods,, Applications of multiple scaling in mechanis (Paris, 4 (1987), 302.
|
[11] |
Z. Tutek, A homogenized model of rod in linear elasticity,, Applications of multiple scaling in mechanis (Paris, 4 (1987), 302.
|
[12] |
V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,", Springer-Verlag, (1994).
|
[13] |
V. V. Zhikov, On an extension and an application of the two-scale convergence method,, Sb. Math., 191 (2000), 973.
doi: 10.1070/SM2000v191n07ABEH000491. |
[1] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[2] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[3] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[4] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[5] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[6] |
Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197 |
[7] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[8] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[9] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[10] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[11] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[12] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[13] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[14] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[15] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[16] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[17] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[18] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[19] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[20] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]