June  2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167

A central limit theorem for pulled fronts in a random medium

1. 

Department of Mathematics, Duke University, Box 90320, Durham, NC, 27708-0320, United States

Received  August 2010 Revised  February 2011 Published  May 2011

We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic medium, and for certain initial condition, the solution develops a moving front that has a deterministic asymptotic speed in the large time limit. The main result of this article is a central limit theorem for the position of the front, in the supercritical regime, if the medium satisfies a mixing condition.
Citation: James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167
References:
[1]

M. Bages, P. Martinez and J.-M. Roquejoffre, How traveling waves attract the solutions of KPP-type equations,, preprint 2010., (2010).   Google Scholar

[2]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[3]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In:, 446 (2007), 101.   Google Scholar

[4]

P. Billingsley, "Convergence of Probability Measures,", John Wiley and Sons, (1968).   Google Scholar

[5]

E. Brunet, B. Derrida, A. H. Mueller and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.056126.  Google Scholar

[6]

S. Chatterjee, A new method of normal approximation,, Ann. Probab., 36 (2008), 1584.  doi: 10.1214/07-AOP370.  Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. Freidlin, "Functional Integration and Partial Differential Equations,", Ann. Math. Stud. 109, (1985).   Google Scholar

[9]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Dokl. Acad. Nauk SSSR, 249 (1979), 521.   Google Scholar

[10]

P. Hall and C. C. Heyde, "Martingale Limit Theory and its Application,", Academic Press, (1980).   Google Scholar

[11]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. European Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[12]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleurde matiére et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1.   Google Scholar

[13]

P.-L. Lions and P. E. Souganidis, Homogenization of viscous Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Diff. Eqn., 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[14]

A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields,, Comm. Pure Appl. Math., 51 (1998), 1337.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B.  Google Scholar

[15]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP-type equations,, Preprint 2010., (2010).   Google Scholar

[16]

A. Mellet, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Stability of generalized transition fronts,, Communications in PDE, 34 (2009), 521.  doi: 10.1080/03605300902768677.  Google Scholar

[17]

C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise,, J. Funct. Anal., 128 (1995), 439.  doi: 10.1006/jfan.1995.1038.  Google Scholar

[18]

J. Nolen, An invariance principle for random traveling waves in one dimension,, SIAM J. Math. Anal., 43 (2011), 153.  doi: 10.1137/090746513.  Google Scholar

[19]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, AIHP - Analyse Non Linéaire, 26 (2009), 1021.   Google Scholar

[20]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, AIHP - Analyse Non Linéaire, 26 (2008), 815.   Google Scholar

[21]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421.  doi: 10.3934/dcdsb.2009.11.421.  Google Scholar

[22]

A. Rocco, U. Ebert and W. van Saarloos, Subdiffusive fluctuations of "pulled" fronts with multiplicative noise,, Phys. Rev. E, 62 (2000).  doi: 10.1103/PhysRevE.62.R13.  Google Scholar

[23]

W. Shen, Traveling waves in diffusive random media,, J. Dynamics and Diff. Eqns., 16 (2004), 1011.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[24]

R. Tribe, A travelling wave solution to the Kolmogorov equation with noise,, Stochastics Stochastics Rep., 56 (1996), 317.   Google Scholar

[25]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[26]

J. Xin, "An Introduction to Fronts in Random Media,", Springer, (2009).  doi: 10.1007/978-0-387-87683-2.  Google Scholar

show all references

References:
[1]

M. Bages, P. Martinez and J.-M. Roquejoffre, How traveling waves attract the solutions of KPP-type equations,, preprint 2010., (2010).   Google Scholar

[2]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[3]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In:, 446 (2007), 101.   Google Scholar

[4]

P. Billingsley, "Convergence of Probability Measures,", John Wiley and Sons, (1968).   Google Scholar

[5]

E. Brunet, B. Derrida, A. H. Mueller and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.056126.  Google Scholar

[6]

S. Chatterjee, A new method of normal approximation,, Ann. Probab., 36 (2008), 1584.  doi: 10.1214/07-AOP370.  Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. Freidlin, "Functional Integration and Partial Differential Equations,", Ann. Math. Stud. 109, (1985).   Google Scholar

[9]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Dokl. Acad. Nauk SSSR, 249 (1979), 521.   Google Scholar

[10]

P. Hall and C. C. Heyde, "Martingale Limit Theory and its Application,", Academic Press, (1980).   Google Scholar

[11]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. European Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[12]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleurde matiére et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1.   Google Scholar

[13]

P.-L. Lions and P. E. Souganidis, Homogenization of viscous Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Diff. Eqn., 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[14]

A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields,, Comm. Pure Appl. Math., 51 (1998), 1337.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B.  Google Scholar

[15]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP-type equations,, Preprint 2010., (2010).   Google Scholar

[16]

A. Mellet, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Stability of generalized transition fronts,, Communications in PDE, 34 (2009), 521.  doi: 10.1080/03605300902768677.  Google Scholar

[17]

C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise,, J. Funct. Anal., 128 (1995), 439.  doi: 10.1006/jfan.1995.1038.  Google Scholar

[18]

J. Nolen, An invariance principle for random traveling waves in one dimension,, SIAM J. Math. Anal., 43 (2011), 153.  doi: 10.1137/090746513.  Google Scholar

[19]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, AIHP - Analyse Non Linéaire, 26 (2009), 1021.   Google Scholar

[20]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, AIHP - Analyse Non Linéaire, 26 (2008), 815.   Google Scholar

[21]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421.  doi: 10.3934/dcdsb.2009.11.421.  Google Scholar

[22]

A. Rocco, U. Ebert and W. van Saarloos, Subdiffusive fluctuations of "pulled" fronts with multiplicative noise,, Phys. Rev. E, 62 (2000).  doi: 10.1103/PhysRevE.62.R13.  Google Scholar

[23]

W. Shen, Traveling waves in diffusive random media,, J. Dynamics and Diff. Eqns., 16 (2004), 1011.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[24]

R. Tribe, A travelling wave solution to the Kolmogorov equation with noise,, Stochastics Stochastics Rep., 56 (1996), 317.   Google Scholar

[25]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[26]

J. Xin, "An Introduction to Fronts in Random Media,", Springer, (2009).  doi: 10.1007/978-0-387-87683-2.  Google Scholar

[1]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[3]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[8]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[11]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[17]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[18]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[19]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[20]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]