June  2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257

Spectral theory for nonconservative transmission line networks

1. 

Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933, United States

Received  August 2010 Revised  April 2011 Published  May 2011

The global theory of transmission line networks with nonconservative junction conditions is developed from a spectral theoretic viewpoint. The rather general junction conditions lead to spectral problems for nonnormal operators. The theory of analytic functions which are almost periodic in a strip is used to establish the existence of an infinite sequence of eigenvalues and the completeness of generalized eigenfunctions. Simple eigenvalues are generic. The asymptotic behavior of an eigenvalue counting function is determined. Specialized results are developed for rational graphs.
Citation: Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257
References:
[1]

A. Agarwal, S. Das and D. Sen, Power dissipation for systems with junctions of multiple quantum wires,, Physical Review B, 81 (2010).   Google Scholar

[2]

L. Ahlfors, "Complex Analysis,", McGraw-Hill, (1966).   Google Scholar

[3]

F. Ali Mehmeti, "Nonlinear Waves in Networks,", Akademie Verlag, (1994).   Google Scholar

[4]

R. Carlson, Inverse eigenvalue problems on directed graphs,, Transactions of the American Mathematical Society, 351 (1999), 4069.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[5]

R. Carlson, Linear network models related to blood flow,, in Quantum Graphs and Their Applications, 415 (2006), 65.   Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks,, J. Math. Anal. Appl., 284 (2003), 403.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams,, SIAM Journal on Applied Mathematics., 49 (1989), 1665.  doi: 10.1137/0149101.  Google Scholar

[8]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[9]

E. B. Davies, Eigenvalues of an elliptic system,, Math. Z., 243 (2003), 719.  doi: 10.1007/s00209-002-0464-0.  Google Scholar

[10]

E. B. Davies, P. Exner and J. Lipovsky, Non-Weyl asymptotics for quantum graphs with general coupling conditions,, J. Phys. A, 43 (2010).   Google Scholar

[11]

Y. Fung, "Biomechanics,", Springer, (1997).   Google Scholar

[12]

I. Herstein, "Topics in Algebra,", Xerox College Publishing, (1964).   Google Scholar

[13]

B. Jessen and H. Tornhave, Mean motions and zeros of almost periodic functions,, Acta Math., 77 (1945), 137.  doi: 10.1007/BF02392225.  Google Scholar

[14]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1995).   Google Scholar

[15]

V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs,, in Analysis on Graphs and Its Applications, 77 (2008), 423.   Google Scholar

[16]

T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs,, Ann. Phys., 274 (1999), 76.  doi: 10.1006/aphy.1999.5904.  Google Scholar

[17]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks,, Math. Z., 249 (2005), 139.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[18]

M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusions in networks,, Appl. Math. Optim., 55 (2007), 219.  doi: 10.1007/s00245-006-0887-9.  Google Scholar

[19]

M. Krein and A. Nudelman, Some spectral properties of a nonhomogeneous string with a dissipative boundary condition,, J. Operator Theory, 22 (1989), 369.   Google Scholar

[20]

B. Levin, "Distribution of Zeros of Entire Functions,", American Mathematical Society, (1980).   Google Scholar

[21]

S. Lang, "Algebra,", Addison-Wesley, (1984).   Google Scholar

[22]

G. Lumer, "Equations de Diffusion Generales sur des Reseaux Infinis,", Seminar Goulaouic-Schwartz, (1980).   Google Scholar

[23]

G. Lumer, "Connecting of Local Operators and Evolution Equations on Networks,", Lecture Notes in Math., 787 (1980).   Google Scholar

[24]

P. Magnusson, G. Alexander, V. Tripathi and A. Weisshaar, "Transmission Lines and Wave Propagation,", CRC Press, (2001).   Google Scholar

[25]

G. Miano and A. Maffucci, "Transmission Lines and Lumped Circuits,", Academic Press, (2001).   Google Scholar

[26]

L. J. Myers and W. L. Capper, A transmission line model of the human foetal circulatory system,, Medical Engineering and Physics, 24 (2002), 285.  doi: 10.1016/S1350-4533(02)00019-X.  Google Scholar

[27]

S. Nicaise, Spectre des reseaux topologiques finis,, Bulletin des sciences mathematique, 111 (1987), 401.   Google Scholar

[28]

J. Ottesen, M. Olufsen and J. Larsen, "Applied Mathematical Models in Human Physiology,", SIAM, (2004).  doi: 10.1137/1.9780898718287.  Google Scholar

[29]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer, (1983).   Google Scholar

[30]

S. Sherwin, V. Franke, J. Peiro and K. Parker, One-dimensional modeling of a vascular network in space-time variables,, Journal of Engineering Mathematics, 47 (2003), 217.  doi: 10.1023/B:ENGI.0000007979.32871.e2.  Google Scholar

[31]

J. von Below, A characteristic equation associated to an eigenvalue problem on C2 networks,, Lin. Alg. Appl., 71 (1985), 309.  doi: 10.1016/0024-3795(85)90258-7.  Google Scholar

[32]

L. Zhou and G. Kriegsmann, A simple derivation of microstrip transmission line equations,, SIAM J. Appl. Math., 70 (2009), 353.  doi: 10.1137/080737563.  Google Scholar

show all references

References:
[1]

A. Agarwal, S. Das and D. Sen, Power dissipation for systems with junctions of multiple quantum wires,, Physical Review B, 81 (2010).   Google Scholar

[2]

L. Ahlfors, "Complex Analysis,", McGraw-Hill, (1966).   Google Scholar

[3]

F. Ali Mehmeti, "Nonlinear Waves in Networks,", Akademie Verlag, (1994).   Google Scholar

[4]

R. Carlson, Inverse eigenvalue problems on directed graphs,, Transactions of the American Mathematical Society, 351 (1999), 4069.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[5]

R. Carlson, Linear network models related to blood flow,, in Quantum Graphs and Their Applications, 415 (2006), 65.   Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks,, J. Math. Anal. Appl., 284 (2003), 403.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams,, SIAM Journal on Applied Mathematics., 49 (1989), 1665.  doi: 10.1137/0149101.  Google Scholar

[8]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[9]

E. B. Davies, Eigenvalues of an elliptic system,, Math. Z., 243 (2003), 719.  doi: 10.1007/s00209-002-0464-0.  Google Scholar

[10]

E. B. Davies, P. Exner and J. Lipovsky, Non-Weyl asymptotics for quantum graphs with general coupling conditions,, J. Phys. A, 43 (2010).   Google Scholar

[11]

Y. Fung, "Biomechanics,", Springer, (1997).   Google Scholar

[12]

I. Herstein, "Topics in Algebra,", Xerox College Publishing, (1964).   Google Scholar

[13]

B. Jessen and H. Tornhave, Mean motions and zeros of almost periodic functions,, Acta Math., 77 (1945), 137.  doi: 10.1007/BF02392225.  Google Scholar

[14]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1995).   Google Scholar

[15]

V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs,, in Analysis on Graphs and Its Applications, 77 (2008), 423.   Google Scholar

[16]

T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs,, Ann. Phys., 274 (1999), 76.  doi: 10.1006/aphy.1999.5904.  Google Scholar

[17]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks,, Math. Z., 249 (2005), 139.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[18]

M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusions in networks,, Appl. Math. Optim., 55 (2007), 219.  doi: 10.1007/s00245-006-0887-9.  Google Scholar

[19]

M. Krein and A. Nudelman, Some spectral properties of a nonhomogeneous string with a dissipative boundary condition,, J. Operator Theory, 22 (1989), 369.   Google Scholar

[20]

B. Levin, "Distribution of Zeros of Entire Functions,", American Mathematical Society, (1980).   Google Scholar

[21]

S. Lang, "Algebra,", Addison-Wesley, (1984).   Google Scholar

[22]

G. Lumer, "Equations de Diffusion Generales sur des Reseaux Infinis,", Seminar Goulaouic-Schwartz, (1980).   Google Scholar

[23]

G. Lumer, "Connecting of Local Operators and Evolution Equations on Networks,", Lecture Notes in Math., 787 (1980).   Google Scholar

[24]

P. Magnusson, G. Alexander, V. Tripathi and A. Weisshaar, "Transmission Lines and Wave Propagation,", CRC Press, (2001).   Google Scholar

[25]

G. Miano and A. Maffucci, "Transmission Lines and Lumped Circuits,", Academic Press, (2001).   Google Scholar

[26]

L. J. Myers and W. L. Capper, A transmission line model of the human foetal circulatory system,, Medical Engineering and Physics, 24 (2002), 285.  doi: 10.1016/S1350-4533(02)00019-X.  Google Scholar

[27]

S. Nicaise, Spectre des reseaux topologiques finis,, Bulletin des sciences mathematique, 111 (1987), 401.   Google Scholar

[28]

J. Ottesen, M. Olufsen and J. Larsen, "Applied Mathematical Models in Human Physiology,", SIAM, (2004).  doi: 10.1137/1.9780898718287.  Google Scholar

[29]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer, (1983).   Google Scholar

[30]

S. Sherwin, V. Franke, J. Peiro and K. Parker, One-dimensional modeling of a vascular network in space-time variables,, Journal of Engineering Mathematics, 47 (2003), 217.  doi: 10.1023/B:ENGI.0000007979.32871.e2.  Google Scholar

[31]

J. von Below, A characteristic equation associated to an eigenvalue problem on C2 networks,, Lin. Alg. Appl., 71 (1985), 309.  doi: 10.1016/0024-3795(85)90258-7.  Google Scholar

[32]

L. Zhou and G. Kriegsmann, A simple derivation of microstrip transmission line equations,, SIAM J. Appl. Math., 70 (2009), 353.  doi: 10.1137/080737563.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[4]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[14]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]