-
Previous Article
Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs
- NHM Home
- This Issue
-
Next Article
Spectral theory for nonconservative transmission line networks
Gaussian estimates on networks with applications to optimal control
1. | Department of Mathematics, University of Trento, Povo (TN), 38123, Italy, Italy |
References:
[1] |
W. Arendt, Heat kernels, Manuscript of the 9th Internet Seminar, Freely available at http://tulka.mathematik.uni-ulm.de/2005/lectures/internetseminar.pdf, 2006. |
[2] |
W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory, 38 (1997), 87-130. |
[3] |
S. Bonaccorsi, F. Confortola and E. Mastrogiacomo, Optimal control of stochastic differential equations with dynamical boundary conditions, J. Math. Anal. Appl., 344 (2008), 667-681.
doi: 10.1016/j.jmaa.2008.03.013. |
[4] |
S. Bonaccorsi, C. Marinelli and G. Ziglio, Stochastic FitzHugh-Nagumo equations on networks with impulsive noise, Electron. J. Probab., 13 (2008), 1362-1379. |
[5] |
A. J. V. Brandāo, E. Fernández-Cara, P. M. D. Magalhāes and M. A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, (2008), No. 164, 20. |
[6] |
V. Casarino, K.-J. Engel, R. Nagel and G. Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory, 47 (2003), 289-306.
doi: 10.1007/s00020-002-1163-2. |
[7] |
S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients, SIAM J. Control Optim., 39 (2001), 1779-1816 (electronic).
doi: 10.1137/S0363012999356465. |
[8] |
G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems," Cambridge UP, 1996. |
[9] |
E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. |
[10] |
K. J. Engel, Spectral theory and generator property for one-sided coupled operator matrices, Semigroup Forum, 58 (1999), 267-295.
doi: 10.1007/s002339900020. |
[11] |
E. B. Fabes and D. W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech.Anal., 96 (1986), 327-338.
doi: 10.1007/BF00251802. |
[12] |
W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Springer-Verlag, New York, 1993. |
[13] |
M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.
doi: 10.1214/aop/1029867132. |
[14] |
J. Keener and J. Sneyd, "Mathematical Physiology," Springer, New York, 1998. |
[15] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3. |
[16] |
M. Kramar Fijavž, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks, Appl. Math. Optim., 55 (2007), 219-240. |
[17] |
F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM J. Control Optim., 47 (2008), 251-300.
doi: 10.1137/050632725. |
[18] |
T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461. |
[19] |
V. G. Maz'ja, "Sobolev Spaces," Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, Translated from the Russian by T. O. Shaposhnikova. |
[20] |
M. Métivier, "Semimartingales," Walter de Gruyter & Co., Berlin, 1982. |
[21] |
D. Mugnolo, Gaussian estimates for a heat equation on a network, Netw. Heterog. Media, 2 (2007), 55-79 (electronic).
doi: 10.3934/nhm.2007.2.55. |
[22] |
D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations, Math. Methods Appl. Sci., 30 (2007), 681-706.
doi: 10.1002/mma.805. |
[23] |
J. D. Murray, "Mathematical Biology. I," third ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002, An introduction. |
[24] |
R. Nagel, Towards a "matrix theory" for unbounded operator matrices, Mathematische Zeitschrift, 201 (1989), 57-68. |
[25] |
E. M. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005. |
[26] |
D. W. Robinson, "Elliptic Operators and Lie Groups," Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications. |
[27] |
C. Rocşoreanu, A. Georgescu and N. Giurgiţeanu, "The FitzHugh-Nagumo Model," Mathematical Modelling: Theory and Applications, vol. 10, Kluwer Academic Publishers, Dordrecht, 2000, Bifurcation and dynamics. |
[28] |
E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463.
doi: 10.1007/s00028-005-0221-z. |
[29] |
Henry C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 1," Cambridge Studies in Mathematical Biology, vol. 8, Cambridge University Press, Cambridge, 1988, Linear cable theory and dendritic structure. |
[30] |
D. B. West, "Introduction to Graph Theory - Second Edition," Prentice Hall Inc., Upper Saddle River, NJ, 2001. |
show all references
References:
[1] |
W. Arendt, Heat kernels, Manuscript of the 9th Internet Seminar, Freely available at http://tulka.mathematik.uni-ulm.de/2005/lectures/internetseminar.pdf, 2006. |
[2] |
W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory, 38 (1997), 87-130. |
[3] |
S. Bonaccorsi, F. Confortola and E. Mastrogiacomo, Optimal control of stochastic differential equations with dynamical boundary conditions, J. Math. Anal. Appl., 344 (2008), 667-681.
doi: 10.1016/j.jmaa.2008.03.013. |
[4] |
S. Bonaccorsi, C. Marinelli and G. Ziglio, Stochastic FitzHugh-Nagumo equations on networks with impulsive noise, Electron. J. Probab., 13 (2008), 1362-1379. |
[5] |
A. J. V. Brandāo, E. Fernández-Cara, P. M. D. Magalhāes and M. A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, (2008), No. 164, 20. |
[6] |
V. Casarino, K.-J. Engel, R. Nagel and G. Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory, 47 (2003), 289-306.
doi: 10.1007/s00020-002-1163-2. |
[7] |
S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients, SIAM J. Control Optim., 39 (2001), 1779-1816 (electronic).
doi: 10.1137/S0363012999356465. |
[8] |
G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems," Cambridge UP, 1996. |
[9] |
E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. |
[10] |
K. J. Engel, Spectral theory and generator property for one-sided coupled operator matrices, Semigroup Forum, 58 (1999), 267-295.
doi: 10.1007/s002339900020. |
[11] |
E. B. Fabes and D. W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech.Anal., 96 (1986), 327-338.
doi: 10.1007/BF00251802. |
[12] |
W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Springer-Verlag, New York, 1993. |
[13] |
M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.
doi: 10.1214/aop/1029867132. |
[14] |
J. Keener and J. Sneyd, "Mathematical Physiology," Springer, New York, 1998. |
[15] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3. |
[16] |
M. Kramar Fijavž, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks, Appl. Math. Optim., 55 (2007), 219-240. |
[17] |
F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM J. Control Optim., 47 (2008), 251-300.
doi: 10.1137/050632725. |
[18] |
T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461. |
[19] |
V. G. Maz'ja, "Sobolev Spaces," Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, Translated from the Russian by T. O. Shaposhnikova. |
[20] |
M. Métivier, "Semimartingales," Walter de Gruyter & Co., Berlin, 1982. |
[21] |
D. Mugnolo, Gaussian estimates for a heat equation on a network, Netw. Heterog. Media, 2 (2007), 55-79 (electronic).
doi: 10.3934/nhm.2007.2.55. |
[22] |
D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations, Math. Methods Appl. Sci., 30 (2007), 681-706.
doi: 10.1002/mma.805. |
[23] |
J. D. Murray, "Mathematical Biology. I," third ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002, An introduction. |
[24] |
R. Nagel, Towards a "matrix theory" for unbounded operator matrices, Mathematische Zeitschrift, 201 (1989), 57-68. |
[25] |
E. M. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005. |
[26] |
D. W. Robinson, "Elliptic Operators and Lie Groups," Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications. |
[27] |
C. Rocşoreanu, A. Georgescu and N. Giurgiţeanu, "The FitzHugh-Nagumo Model," Mathematical Modelling: Theory and Applications, vol. 10, Kluwer Academic Publishers, Dordrecht, 2000, Bifurcation and dynamics. |
[28] |
E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463.
doi: 10.1007/s00028-005-0221-z. |
[29] |
Henry C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 1," Cambridge Studies in Mathematical Biology, vol. 8, Cambridge University Press, Cambridge, 1988, Linear cable theory and dendritic structure. |
[30] |
D. B. West, "Introduction to Graph Theory - Second Edition," Prentice Hall Inc., Upper Saddle River, NJ, 2001. |
[1] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[2] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[3] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
[4] |
Ștefana-Lucia Aniţa. Optimal control for stochastic differential equations and related Kolmogorov equations. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022023 |
[5] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[6] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[7] |
Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1565-1581. doi: 10.3934/dcdsb.2019240 |
[8] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[9] |
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006 |
[10] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[11] |
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 |
[12] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[13] |
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221 |
[14] |
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 |
[15] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047 |
[16] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[17] |
Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905 |
[18] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[19] |
Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055 |
[20] |
Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control and Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]