- Previous Article
- NHM Home
- This Issue
-
Next Article
Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs
Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays
1. | Center for Computational Systems Biology, Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433 |
2. | Max Planck Institute for Mathematics in theSciences, Inselstr. 22, 04103 Leipzig, Germany |
References:
[1] |
P.-A. Bliman and G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications,, Automatica, 44 (2008), 1985.
doi: 10.1016/j.automatica.2007.12.010. |
[2] |
M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphical approach,, SIAM J. Control Optim., 47 (2008), 575.
doi: 10.1137/060657005. |
[3] |
S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging,, J. Appl. Prob., 14 (1977), 89.
doi: 10.2307/3213262. |
[4] |
O. Chilina, "f-Uniform Ergodicity of Markov Chains,'', Supervised Project, (2006). Google Scholar |
[5] |
M. H. DeGroot, Reaching a consensus,, J. Amer. Statist. Assoc., 69 (1974), 118.
doi: 10.2307/2285509. |
[6] |
D. V. Dimarogonasa and K. H. Johansson, Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control,, Automatica, 46 (2010), 695.
doi: 10.1016/j.automatica.2010.01.012. |
[7] |
R. Durrett, "Probability: Theory and Examples," 3rd edition,, Belmont, (2005).
|
[8] |
F. Fagnani and S. Zampieri, Average consensus with packet drop communication,, SIAM J. Control Optim., 48 (2009), 102.
doi: 10.1137/060676866. |
[9] |
L. Fang, P. J. Antsaklis and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations and open questions,, Proceedings of the 44th IEEE Conf. Decision and Control, (2005), 2194. Google Scholar |
[10] |
J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Autom. Control, 49 (2004), 1465.
doi: 10.1109/TAC.2004.834433. |
[11] |
C. Godsil and G. Royle, "Algebraic Graph Theory,", Springer-Verlag, (2001).
|
[12] |
J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains,, Proc. Camb. Phil. Soc., 52 (1956), 67.
doi: 10.1017/S0305004100030991. |
[13] |
J. Hajnal, Weak ergodicity in non-homogeneous Markov chains,, Proc. Camb. Phil. Soc., 54 (1958), 233.
doi: 10.1017/S0305004100033399. |
[14] |
Y. Hatano and M. Mesbahi, Agreement over random networks,, IEEE Trans. Autom. Control, 50 (2005), 1867.
doi: 10.1109/TAC.2005.858670. |
[15] |
R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).
|
[16] |
Y. Kuramoto, "Chemical Oscillations, Waves, And Turbulence,", Springer-Verlag, (1984).
|
[17] |
J. Lin, A. S. Morse and B. D. O. Anderson, The multi-agent rendezvous problem Part 2: The asynchronous case,, SIAM J. Control Optim., 46 (2007), 2120.
doi: 10.1137/040620564. |
[18] |
B. Liu, W. Lu and T. Chen, Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes,, SIAM J. Control Optim., 49 (2011), 227.
doi: 10.1137/090745945. |
[19] |
W. Lu, F. M. Atay and J. Jost, Synchronization of discrete-time networks with time-varying couplings,, SIAM J. Math. Analys., 39 (2007), 1231.
doi: 10.1137/060657935. |
[20] |
W. Lu, F. M. Atay and J. Jost, Chaos synchronization in networks of coupled maps with time-varying topologies,, Eur. Phys. J. B, 63 (2008), 399.
doi: 10.1140/epjb/e2008-00023-3. |
[21] |
N. A. Lynch, "Distributed Algorithms,", CA: Morgan Kaufmann, (1996).
|
[22] |
W. Ni and D. Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies,, Systems & Control Letters, 59 (2010), 209.
doi: 10.1016/j.sysconle.2010.01.006. |
[23] |
W. Michiels, C.-I. Morărescu and S.-I. Niculescu, Consensus problems with distributed delays, with application to traffic flow models,, SIAM J. Control Optim., 48 (2009), 77.
doi: 10.1137/060671425. |
[24] |
L. Moreau, Stability of continuous-time distributed consensus algorithms,, 43rd IEEE Conference on Decision and Control, 4 (2004), 3998. Google Scholar |
[25] |
L. Moreau, Stability of multiagent systems with time-dependent communication links,, IEEE Trans. Autom. Control, 50 (2005), 169.
doi: 10.1109/TAC.2004.841888. |
[26] |
R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, 44th IEEE Conference on Decision and Control 2005, (2005), 6698.
doi: 10.1109/CDC.2005.1583238. |
[27] |
R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215.
doi: 10.1109/JPROC.2006.887293. |
[28] |
R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.
doi: 10.1109/TAC.2004.834113. |
[29] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511755743. |
[30] |
J. Shen, A geometric approach to ergodic non-homogeneous Markov chains,, Wavelet Anal. Multi. Meth., 212 (2000), 341.
|
[31] |
A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Trans. Autom. Control, 53 (2008), 791.
doi: 10.1109/TAC.2008.917743. |
[32] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
[33] |
A. T. Winfree, "The Geometry of Biological Time,", Springer Verlag, (1980).
|
[34] |
J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices,, Proceedings of AMS, 14 (1963), 733.
|
[35] |
C. W. Wu, Synchronization and convergence of linear dynamics in random directed networks,, IEEE Trans. Autom. Control, 51 (2006), 1207.
|
[36] |
F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica, 44 (2008), 2577.
|
[37] |
F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Transactions on Automatic Control, 53 (2008), 1804.
|
[38] |
Y. Zhang and Y.-P. Tian, Consentability and protocol design of multi-agent systems with stochastic switching topology,, Automatica, 45 (2009), 1195.
|
show all references
References:
[1] |
P.-A. Bliman and G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications,, Automatica, 44 (2008), 1985.
doi: 10.1016/j.automatica.2007.12.010. |
[2] |
M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphical approach,, SIAM J. Control Optim., 47 (2008), 575.
doi: 10.1137/060657005. |
[3] |
S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging,, J. Appl. Prob., 14 (1977), 89.
doi: 10.2307/3213262. |
[4] |
O. Chilina, "f-Uniform Ergodicity of Markov Chains,'', Supervised Project, (2006). Google Scholar |
[5] |
M. H. DeGroot, Reaching a consensus,, J. Amer. Statist. Assoc., 69 (1974), 118.
doi: 10.2307/2285509. |
[6] |
D. V. Dimarogonasa and K. H. Johansson, Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control,, Automatica, 46 (2010), 695.
doi: 10.1016/j.automatica.2010.01.012. |
[7] |
R. Durrett, "Probability: Theory and Examples," 3rd edition,, Belmont, (2005).
|
[8] |
F. Fagnani and S. Zampieri, Average consensus with packet drop communication,, SIAM J. Control Optim., 48 (2009), 102.
doi: 10.1137/060676866. |
[9] |
L. Fang, P. J. Antsaklis and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations and open questions,, Proceedings of the 44th IEEE Conf. Decision and Control, (2005), 2194. Google Scholar |
[10] |
J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Autom. Control, 49 (2004), 1465.
doi: 10.1109/TAC.2004.834433. |
[11] |
C. Godsil and G. Royle, "Algebraic Graph Theory,", Springer-Verlag, (2001).
|
[12] |
J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains,, Proc. Camb. Phil. Soc., 52 (1956), 67.
doi: 10.1017/S0305004100030991. |
[13] |
J. Hajnal, Weak ergodicity in non-homogeneous Markov chains,, Proc. Camb. Phil. Soc., 54 (1958), 233.
doi: 10.1017/S0305004100033399. |
[14] |
Y. Hatano and M. Mesbahi, Agreement over random networks,, IEEE Trans. Autom. Control, 50 (2005), 1867.
doi: 10.1109/TAC.2005.858670. |
[15] |
R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).
|
[16] |
Y. Kuramoto, "Chemical Oscillations, Waves, And Turbulence,", Springer-Verlag, (1984).
|
[17] |
J. Lin, A. S. Morse and B. D. O. Anderson, The multi-agent rendezvous problem Part 2: The asynchronous case,, SIAM J. Control Optim., 46 (2007), 2120.
doi: 10.1137/040620564. |
[18] |
B. Liu, W. Lu and T. Chen, Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes,, SIAM J. Control Optim., 49 (2011), 227.
doi: 10.1137/090745945. |
[19] |
W. Lu, F. M. Atay and J. Jost, Synchronization of discrete-time networks with time-varying couplings,, SIAM J. Math. Analys., 39 (2007), 1231.
doi: 10.1137/060657935. |
[20] |
W. Lu, F. M. Atay and J. Jost, Chaos synchronization in networks of coupled maps with time-varying topologies,, Eur. Phys. J. B, 63 (2008), 399.
doi: 10.1140/epjb/e2008-00023-3. |
[21] |
N. A. Lynch, "Distributed Algorithms,", CA: Morgan Kaufmann, (1996).
|
[22] |
W. Ni and D. Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies,, Systems & Control Letters, 59 (2010), 209.
doi: 10.1016/j.sysconle.2010.01.006. |
[23] |
W. Michiels, C.-I. Morărescu and S.-I. Niculescu, Consensus problems with distributed delays, with application to traffic flow models,, SIAM J. Control Optim., 48 (2009), 77.
doi: 10.1137/060671425. |
[24] |
L. Moreau, Stability of continuous-time distributed consensus algorithms,, 43rd IEEE Conference on Decision and Control, 4 (2004), 3998. Google Scholar |
[25] |
L. Moreau, Stability of multiagent systems with time-dependent communication links,, IEEE Trans. Autom. Control, 50 (2005), 169.
doi: 10.1109/TAC.2004.841888. |
[26] |
R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, 44th IEEE Conference on Decision and Control 2005, (2005), 6698.
doi: 10.1109/CDC.2005.1583238. |
[27] |
R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215.
doi: 10.1109/JPROC.2006.887293. |
[28] |
R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.
doi: 10.1109/TAC.2004.834113. |
[29] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511755743. |
[30] |
J. Shen, A geometric approach to ergodic non-homogeneous Markov chains,, Wavelet Anal. Multi. Meth., 212 (2000), 341.
|
[31] |
A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Trans. Autom. Control, 53 (2008), 791.
doi: 10.1109/TAC.2008.917743. |
[32] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
[33] |
A. T. Winfree, "The Geometry of Biological Time,", Springer Verlag, (1980).
|
[34] |
J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices,, Proceedings of AMS, 14 (1963), 733.
|
[35] |
C. W. Wu, Synchronization and convergence of linear dynamics in random directed networks,, IEEE Trans. Autom. Control, 51 (2006), 1207.
|
[36] |
F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica, 44 (2008), 2577.
|
[37] |
F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Transactions on Automatic Control, 53 (2008), 1804.
|
[38] |
Y. Zhang and Y.-P. Tian, Consentability and protocol design of multi-agent systems with stochastic switching topology,, Automatica, 45 (2009), 1195.
|
[1] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[2] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[3] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[4] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[5] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[6] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[7] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[8] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[9] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[10] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[11] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[12] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[13] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[14] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[15] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291 |
[16] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[17] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[20] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]