• Previous Article
    On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems
  • NHM Home
  • This Issue
  • Next Article
    Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions
March  2011, 6(1): 37-60. doi: 10.3934/nhm.2011.6.37

A mathematical model for spaghetti cooking with free boundaries

1. 

Università degli Studi di Firenze, Dipartimento di Matematica, "Ulisse Dini", Viale Morgagni 67/A, I-50134, Firenze, Italy, Italy

2. 

Università degli Studi di Firenze, Dipartimento di Fisica, Via Sansone 1, I-50019, Sesto Fiorentino (FI), Italy

Received  January 2010 Revised  November 2010 Published  March 2011

We propose a mathematical model for the process of dry pasta cooking with specific reference to spaghetti. Pasta cooking is a two-stage process: water penetration followed by starch gelatinization. Differently from the approach adopted so far in the technical literature, our model includes free boundaries: the water penetration front and the gelatinization onset front representing a fast stage of the corresponding process. Behind the respective fronts water sorption and gelatinization proceed according to some kinetics. The outer boundary is also moving and unknown as a consequence of swelling. Existence and uniqueness are proved and numerical simulations are presented.
Citation: Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries. Networks & Heterogeneous Media, 2011, 6 (1) : 37-60. doi: 10.3934/nhm.2011.6.37
References:
[1]

S. Cafieri, S. Chillo, M. Mastromatteo, N. Suriano and M. A. Del Nobile, A mathematical model to predict the effect of shape on pasta hydration kinetic during cooking and overcooking,, J. Cereal Science, (2008).   Google Scholar

[2]

E. Cocci, G. Sacchetti, M. Vallicelli and M. Dalla Rosa, Spaghetti cooking b microwave oven: Cooking kinetics and product quality,, J. Food Eng., 85 (2008), 537.  doi: oi:10.1016/j.jfoodeng.2007.08.013.  Google Scholar

[3]

S. E. Cunningham, W. A. M. Mcminn, T. R. A. Magee and P. S. Richardson, Modelling water absorption of pasta during soaking,, J. Food. Eng., 82 (2007), 600.  doi: 10.1016/j.jfoodeng.2007.03.018.  Google Scholar

[4]

M. J. Davey, K. A. Landman, M. J. McGuinness and H. N. Jin, Mathematical modelling of rice cooking and dissolution in beer production,, AIChE Journal, 48 (2002), 1811.  doi: 10.1002/aic.690480821.  Google Scholar

[5]

R. A. Grzybowski and B. J. Donnelly, Starch gelatinization in cooked spaghetti,, J. Food Science, 42 (1977), 1304.  doi: 10.1111/j.1365-2621.1977.tb14483.x.  Google Scholar

[6]

M. J. McGuinness, C. P. Please, N. Fowkes, P. McGowan, L. Ryder and D. Forte, Modelling the wetting and cooking of a single cereal grain,, IMA J. Math. Appl. Business and Industry, 11 (2000), 49.   Google Scholar

[7]

A. G. F. Stapley, P. J. Fryer and L. F. Gladden, Diffusion and reaction in whole wheat grains during boiling,, AIChE Journal, 44 (1998), 1777.  doi: 10.1002/aic.690440809.  Google Scholar

[8]

A. K. Syarief, R. J. Gustafson and R. V. Morey, Moisture diffusion coefficients for yellow-dent corn components,, Trans. ASAE, 30 (1987), 522.   Google Scholar

[9]

Ch. Xue, N. Sakai and M. Fukuoka, Use of microwave heating to control the degree of starch geletinization in noodles,, J. Food. Eng., 87 (2007), 357.  doi: 10.1016/j.jfoodeng.2007.12.017.  Google Scholar

[10]

Tain-Yi Zhang, A. S. Bakshi, R. J. Gustafson and D. B. Lund, Finite element analysis of nonlinear water diffusion during rice soaking,, J. Food Science, 49 (1984), 246.  doi: 10.1111/j.1365-2621.1984.tb13719.x.  Google Scholar

show all references

References:
[1]

S. Cafieri, S. Chillo, M. Mastromatteo, N. Suriano and M. A. Del Nobile, A mathematical model to predict the effect of shape on pasta hydration kinetic during cooking and overcooking,, J. Cereal Science, (2008).   Google Scholar

[2]

E. Cocci, G. Sacchetti, M. Vallicelli and M. Dalla Rosa, Spaghetti cooking b microwave oven: Cooking kinetics and product quality,, J. Food Eng., 85 (2008), 537.  doi: oi:10.1016/j.jfoodeng.2007.08.013.  Google Scholar

[3]

S. E. Cunningham, W. A. M. Mcminn, T. R. A. Magee and P. S. Richardson, Modelling water absorption of pasta during soaking,, J. Food. Eng., 82 (2007), 600.  doi: 10.1016/j.jfoodeng.2007.03.018.  Google Scholar

[4]

M. J. Davey, K. A. Landman, M. J. McGuinness and H. N. Jin, Mathematical modelling of rice cooking and dissolution in beer production,, AIChE Journal, 48 (2002), 1811.  doi: 10.1002/aic.690480821.  Google Scholar

[5]

R. A. Grzybowski and B. J. Donnelly, Starch gelatinization in cooked spaghetti,, J. Food Science, 42 (1977), 1304.  doi: 10.1111/j.1365-2621.1977.tb14483.x.  Google Scholar

[6]

M. J. McGuinness, C. P. Please, N. Fowkes, P. McGowan, L. Ryder and D. Forte, Modelling the wetting and cooking of a single cereal grain,, IMA J. Math. Appl. Business and Industry, 11 (2000), 49.   Google Scholar

[7]

A. G. F. Stapley, P. J. Fryer and L. F. Gladden, Diffusion and reaction in whole wheat grains during boiling,, AIChE Journal, 44 (1998), 1777.  doi: 10.1002/aic.690440809.  Google Scholar

[8]

A. K. Syarief, R. J. Gustafson and R. V. Morey, Moisture diffusion coefficients for yellow-dent corn components,, Trans. ASAE, 30 (1987), 522.   Google Scholar

[9]

Ch. Xue, N. Sakai and M. Fukuoka, Use of microwave heating to control the degree of starch geletinization in noodles,, J. Food. Eng., 87 (2007), 357.  doi: 10.1016/j.jfoodeng.2007.12.017.  Google Scholar

[10]

Tain-Yi Zhang, A. S. Bakshi, R. J. Gustafson and D. B. Lund, Finite element analysis of nonlinear water diffusion during rice soaking,, J. Food Science, 49 (1984), 246.  doi: 10.1111/j.1365-2621.1984.tb13719.x.  Google Scholar

[1]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[2]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[3]

David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301

[4]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[5]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[6]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[7]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[8]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[9]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[10]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[11]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[12]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[13]

Yuan Wu, Jin Liang. Free boundaries of credit rating migration in switching macro regions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019038

[14]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019199

[15]

Razvan C. Fetecau, Mitchell Kovacic, Ihsan Topaloglu. Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1815-1842. doi: 10.3934/dcdsb.2018238

[16]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[17]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[18]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[19]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[20]

X. Xiang, Y. Peng, W. Wei. A general class of nonlinear impulsive integral differential equations and optimal controls on Banach spaces. Conference Publications, 2005, 2005 (Special) : 911-919. doi: 10.3934/proc.2005.2005.911

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]