September  2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465

Towards a mathematical model for stability in pedestrian flows

1. 

Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria 3010, Australia, Australia

Received  December 2010 Revised  June 2011 Published  August 2011

It is suggested that flows of pedestrians on curved paths, such as the recirculating flow that occur around the Kaaba in Mecca, continually stratify themselves according to tolerance of crowd density with those pedestrians who are more tolerant of high densities taking a path of shorter length. Such stratification occurs over a distance, referred to here as the ``stratification distance scale" and is generally of the order of the radius of curvature of the flow. Once stratified a pedestrian crowd flows smoothly around an obstacle with a distance scale greater than the stratification distance scale. However, flow past a smaller obstacle with a distance scale less than the stratification distance scale, leads to some temporary breakdown in this stratification, with the flow developing patches of turbulent-like behavior with different pedestrian types responding differently to the obstacle. The flow between the nearby Safa and Marwa Hills is poorly stratified because of the lack of curvature of the flow between the Hills even though the flow is recirculating. At the start of each turning point by each Hill, the change in curvature leads to turbulence-like behavior as the stratification reforms, after its breakdown between the Hills, for the flow around the Hills.
Citation: Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks & Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465
References:
[1]

A. T. Chahly, "Descriptive Geometry,", The Higher School Pub, ().

[2]

J. W. Daily and D. R. F. Harleman, "Fluid Dynamics,", Addison-Wesley, (1966).

[3]

B. D. Hankin and R. A. Wright, Passenger flow in subways,, Journal of the Operational Research Society, 9 (1958), 81. doi: 10.1057/jors.1958.9.

[4]

B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, "GPS: Theory and Practice,", Springer-Verlag, (1992).

[5]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Trans. Res. Part B, 36 (2002), 507. doi: 10.1016/S0191-2615(01)00015-7.

[6]

N. A. Koshak and A. Fouda, "Analyzing Pedestrian Movement in Mataf Using GPS and GIS to Support Space Redesign,", Proceedings of the Ninth International Conference on Design and Decision Support Systems (DDSS) in Architecture and Urban Planning, (2008).

[7]

R. S. C. Lee and R. L. Hughes, Exploring trampling and crushing in a crowd,, Journal of Transportation Engineering, 131 (2005), 575. doi: 10.1061/(ASCE)0733-947X(2005)131:8(575).

[8]

R. S. C. Lee, "The Danger in a Crowd,", Ph.D thesis, (2005).

[9]

A. Leick, "GPS Satellite Surveying," 2nd edition,, John Wiley & Sons, (1995).

[10]

B. W. Parkinson, Introduction and heritage of NAVSTAR,, Global Positioning System: Theory and Applications, 1 (1996), 3.

[11]

B. W. Parkinson and J. J. Spilker, Global Positioning System: Theory and applications,, American Institute of Aeronautics and Astronautics, 2 (1996), 3.

[12]

S. Sarmady, F. Haron, M. M. Mohd Salahudin and A. Z. H. Talib, Evaluation of existing software for simulating of crowd at masjid Al-Haram,, Jurnal Pengurusan JWZH, 1 (2007), 83.

[13]

B. W. Parkinson and J. J. Spilker, Overview of GPS operation and design,, Global Positioning System: Theory and applications, (1996), 29.

[14]

D. Stewart, "Mecca,", Newsweek, (1980).

[15]

D. E. Wells, N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. M. Tranquilla and P. Vanícek, "Guide to GPS Positioning,", University of New Brunswick, (1987).

[16]

, http://www.fathersez.com/wp-content/uploads/2008/09/kaabah-tawafpreview.jpg,, Accessed on April 2010., (2010).

[17]

, http://image62.webshots.com/662/4/10/80/2938410800103225830Msadrn_ph.jpg,, Accessed on April 2010., (2010).

[18]

, http://www.watchingamerica.com/images/kaaba_pic.jpeg,, Accessed on May 2010., (2010).

[19]

, http://farm3.static.flickr.com/2097/2119107921_a2739375f9_b.jpg,, Accessed on May 2010., (2010).

[20]

, http://navedz.files.wordpress.com/2009/03/kaaba-1429-hijri.jpg,, Accessed on May 2010., (2010).

[21]

, http://islamfrance.free.fr/photo/mosquee/normale/kaaba03.jpg,, Accessed on May 2010., (2010).

[22]

, http://www.princeton.edu/~humcomp/tawaf.jpg,, Accessed on May 2010., (2010).

[23]

, http://www.muslimherald.com/Files/k/Masjed-Alharam_Tawaf1a.jpg,, Accessed on May 2010., (2010).

[24]

Z. Zainuddin, K. Thinakaran and I. M. Abu-Sulyman, Simulating the circumambulation of the Ka'aba using Sim Walk,, European Journal of Scientific Research, 38 (2009), 454.

show all references

References:
[1]

A. T. Chahly, "Descriptive Geometry,", The Higher School Pub, ().

[2]

J. W. Daily and D. R. F. Harleman, "Fluid Dynamics,", Addison-Wesley, (1966).

[3]

B. D. Hankin and R. A. Wright, Passenger flow in subways,, Journal of the Operational Research Society, 9 (1958), 81. doi: 10.1057/jors.1958.9.

[4]

B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, "GPS: Theory and Practice,", Springer-Verlag, (1992).

[5]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Trans. Res. Part B, 36 (2002), 507. doi: 10.1016/S0191-2615(01)00015-7.

[6]

N. A. Koshak and A. Fouda, "Analyzing Pedestrian Movement in Mataf Using GPS and GIS to Support Space Redesign,", Proceedings of the Ninth International Conference on Design and Decision Support Systems (DDSS) in Architecture and Urban Planning, (2008).

[7]

R. S. C. Lee and R. L. Hughes, Exploring trampling and crushing in a crowd,, Journal of Transportation Engineering, 131 (2005), 575. doi: 10.1061/(ASCE)0733-947X(2005)131:8(575).

[8]

R. S. C. Lee, "The Danger in a Crowd,", Ph.D thesis, (2005).

[9]

A. Leick, "GPS Satellite Surveying," 2nd edition,, John Wiley & Sons, (1995).

[10]

B. W. Parkinson, Introduction and heritage of NAVSTAR,, Global Positioning System: Theory and Applications, 1 (1996), 3.

[11]

B. W. Parkinson and J. J. Spilker, Global Positioning System: Theory and applications,, American Institute of Aeronautics and Astronautics, 2 (1996), 3.

[12]

S. Sarmady, F. Haron, M. M. Mohd Salahudin and A. Z. H. Talib, Evaluation of existing software for simulating of crowd at masjid Al-Haram,, Jurnal Pengurusan JWZH, 1 (2007), 83.

[13]

B. W. Parkinson and J. J. Spilker, Overview of GPS operation and design,, Global Positioning System: Theory and applications, (1996), 29.

[14]

D. Stewart, "Mecca,", Newsweek, (1980).

[15]

D. E. Wells, N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. M. Tranquilla and P. Vanícek, "Guide to GPS Positioning,", University of New Brunswick, (1987).

[16]

, http://www.fathersez.com/wp-content/uploads/2008/09/kaabah-tawafpreview.jpg,, Accessed on April 2010., (2010).

[17]

, http://image62.webshots.com/662/4/10/80/2938410800103225830Msadrn_ph.jpg,, Accessed on April 2010., (2010).

[18]

, http://www.watchingamerica.com/images/kaaba_pic.jpeg,, Accessed on May 2010., (2010).

[19]

, http://farm3.static.flickr.com/2097/2119107921_a2739375f9_b.jpg,, Accessed on May 2010., (2010).

[20]

, http://navedz.files.wordpress.com/2009/03/kaaba-1429-hijri.jpg,, Accessed on May 2010., (2010).

[21]

, http://islamfrance.free.fr/photo/mosquee/normale/kaaba03.jpg,, Accessed on May 2010., (2010).

[22]

, http://www.princeton.edu/~humcomp/tawaf.jpg,, Accessed on May 2010., (2010).

[23]

, http://www.muslimherald.com/Files/k/Masjed-Alharam_Tawaf1a.jpg,, Accessed on May 2010., (2010).

[24]

Z. Zainuddin, K. Thinakaran and I. M. Abu-Sulyman, Simulating the circumambulation of the Ka'aba using Sim Walk,, European Journal of Scientific Research, 38 (2009), 454.

[1]

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485

[2]

Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363

[3]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[4]

Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic & Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025

[5]

Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019078

[6]

Nicola Bellomo, Abdelghani Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks & Heterogeneous Media, 2011, 6 (3) : 383-399. doi: 10.3934/nhm.2011.6.383

[7]

Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004

[8]

Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic & Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022

[9]

Andreas Schadschneider, Armin Seyfried. Empirical results for pedestrian dynamics and their implications for modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 545-560. doi: 10.3934/nhm.2011.6.545

[10]

Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics. Networks & Heterogeneous Media, 2011, 6 (3) : 425-442. doi: 10.3934/nhm.2011.6.425

[11]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

[12]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks & Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[13]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[14]

Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031

[15]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[16]

Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond. Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1271-1290. doi: 10.3934/mbe.2018059

[17]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[18]

Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows. Mathematical Biosciences & Engineering, 2015, 12 (2) : 375-392. doi: 10.3934/mbe.2015.12.375

[19]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[20]

Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]