• Previous Article
    Existence and approximation of probability measure solutions to models of collective behaviors
  • NHM Home
  • This Issue
  • Next Article
    Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods
September  2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545

Empirical results for pedestrian dynamics and their implications for modeling

1. 

Institute for Theoretical Physics, University of Cologne, 50937 Köln

2. 

Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich

Received  December 2010 Revised  May 2011 Published  August 2011

The current status of empirical results for pedestrian dynamics is reviewd. Suprisingly even for basic quantities like the flow-density relation there is currently no consensus since the results obtained in various empirical and experimental studies deviate substantially. We report results from recent large-scale experiments for pedestrian flow in simple scenarios like long corridors and bottlenecks which have been performed under controlled laboratory conditions that are easily reproducible. Finally the implications of the unsatisfactory empirical situation for the modeling of pedestrian dynamics is discussed.
Citation: Andreas Schadschneider, Armin Seyfried. Empirical results for pedestrian dynamics and their implications for modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 545-560. doi: 10.3934/nhm.2011.6.545
References:
[1]

M. Boltes, A. Seyfried, B. Steffen and A. Schadschneider, Automatic extraction of pedestrian trajectories from video recordings,, in [12], ().   Google Scholar

[2]

D. Challet, M. Marsili and Y.-C. Zhang, Stylized facts of financial markets and market crashes in Minority Games,, Physica A, 294 (2001).  doi: 10.1016/S0378-4371(01)00103-0.  Google Scholar

[3]

U. Chattaraj, A. Seyfried and P. Chakroborty, Comparison of pedestrian fundamental diagram across cultures,, Adv. Comp. Sys., 12 (2009).  doi: 10.1142/S0219525909002209.  Google Scholar

[4]

W. Daamen and S. Hoogendoorn, Capacity of doors during evacuation conditions,, Procedia Engineering, 3 (2010), 53.  doi: 10.1016/j.proeng.2010.07.007.  Google Scholar

[5]

W. Daamen and S. Hoogendoorn, "Empirical Differences Between Time Mean Speed and Space Mean Speed,", Traffic and Granular Flow '07, (2009).   Google Scholar

[6]

D. Dieckmann, "Die Feuersicherheit in Theatern,", in German, (1911).   Google Scholar

[7]

J. J. Fruin, "Pedestrian Planning and Design,", Metropolitan Association of Urban Designers and Environmental Planners, (1971).   Google Scholar

[8]

D. Helbing, A. Johansson and H. Al Abideen, Dynamics of crowd disasters: an empirical study,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[9]

S. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks,, Transp. Sc., 39 (2005), 147.  doi: 10.1287/trsc.1040.0102.  Google Scholar

[10]

S. Hoogendoorn and W. Daamen, A novel calibration approach of microscopic pedestrian models,, in [38], ().   Google Scholar

[11]

B. S. Kerner, "The Physics of Traffic,", Springer, (2004).   Google Scholar

[12]

W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008,", Springer, (2010).   Google Scholar

[13]

T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck,, J. Stat. Mech., (2006).  doi: 10.1088/1742-5468/2006/10/P10014.  Google Scholar

[14]

W. Leutzbach, "Introduction to the Theory of Traffic Flow,", Springer, (1988).   Google Scholar

[15]

J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length,", Traffic and Granular Flow 2009, (2009).   Google Scholar

[16]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd,, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755.  doi: 10.1098/rspb.2009.0405.  Google Scholar

[17]

H. Muir, D. Bottomley and C. Marrison, Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress,, Int. Jour. Aviation Psychology, 6 (1996), 57.  doi: 10.1207/s15327108ijap0601_4.  Google Scholar

[18]

K. Müller, "Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden,", Dissertation, (1981).   Google Scholar

[19]

R. Nagai, M. Fukamachi and T. Nagatani, Evacuation of crawlers and walkers from corridor through an exit,, Physica A, 367 (2006), 449.  doi: 10.1016/j.physa.2005.11.031.  Google Scholar

[20]

P. D. Navin and R. J. Wheeler, Pedestrian flow characteristics,, Traffic Engineering, 39 (1969), 31.   Google Scholar

[21]

H. E. Nelson and F. W. Mowrer, Emergency movement,, in, (2002).   Google Scholar

[22]

D. Oeding, "Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fuβgängerverkehrs,", Internal Report, 22 (1963).   Google Scholar

[23]

S. J. Older, Movement of pedestrians on footways in shopping streets,, Traffic Engineering and Control, 10 (1968), 160.   Google Scholar

[24]

V. Popkov and G. Schütz, Steady-state selection in driven diffusive systems with open boundaries,, Europhys. Lett., 48 (1999).  doi: 10.1209/epl/i1999-00474-0.  Google Scholar

[25]

A. Portz and A. Seyfried, Modeling stop-and-go waves in pedestrian dynamics,, in, (2010), 561.   Google Scholar

[26]

V. M. Predtechenskii and A. I. Milinskii, "Planning for Foot Traffic Flow in Buildings,", Amerind Publishing, (1978).   Google Scholar

[27]

B. Pushkarev and J. M. Zupan, Capacity of walkways,, Transp. Res. Rec., 538 (1975), 1.   Google Scholar

[28]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems,", Elsevier, (2010).   Google Scholar

[29]

A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications,, Encyclopedia of Complexity and System Science, (2009).   Google Scholar

[30]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for cellular automata models,, in [38], ().   Google Scholar

[31]

A. Seyfried et al., Cultural effects on the fundamental diagram of pedestrian motion,, in preparation., ().   Google Scholar

[32]

A. Seyfried, M. Boltes, J. Kähler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen and A. Winkens, Enhanced empirical data for the fundamental diagram and the flow through bottlenecks,, in [12], (): 145.   Google Scholar

[33]

A. Seyfried. O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks,, Transp. Sc., 43 (2009), 395.  doi: 10.1287/trsc.1090.0263.  Google Scholar

[34]

A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics,, in, (2010), 496.  doi: 10.1007/978-3-642-15979-4_53.  Google Scholar

[35]

A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments,, Cybernetics and Systems, 40 (2009).   Google Scholar

[36]

A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited,, J. Stat. Mech., (2005).   Google Scholar

[37]

B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter,, Physica A, 389 (2010), 1902.  doi: 10.1016/j.physa.2009.12.015.  Google Scholar

[38]

H. Timmermans, ed., "Pedestrian Behavior,", Emerald, (2009).   Google Scholar

[39]

P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations,, Fire Safety Journal, 24 (1995), 131.  doi: 10.1016/0379-7112(95)00019-P.  Google Scholar

[40]

M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts,, Transp. Res. B, 44 (2010).  doi: 10.1016/j.trb.2010.03.004.  Google Scholar

[41]

U. Weidmann, "Transporttechnik der Fussgänger,", Schriftenreihe des IVT, 90 (1993).   Google Scholar

[42]

J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions,, J. Stat. Mech., (2011).  doi: 10.1088/1742-5468/2011/06/P06004.  Google Scholar

show all references

References:
[1]

M. Boltes, A. Seyfried, B. Steffen and A. Schadschneider, Automatic extraction of pedestrian trajectories from video recordings,, in [12], ().   Google Scholar

[2]

D. Challet, M. Marsili and Y.-C. Zhang, Stylized facts of financial markets and market crashes in Minority Games,, Physica A, 294 (2001).  doi: 10.1016/S0378-4371(01)00103-0.  Google Scholar

[3]

U. Chattaraj, A. Seyfried and P. Chakroborty, Comparison of pedestrian fundamental diagram across cultures,, Adv. Comp. Sys., 12 (2009).  doi: 10.1142/S0219525909002209.  Google Scholar

[4]

W. Daamen and S. Hoogendoorn, Capacity of doors during evacuation conditions,, Procedia Engineering, 3 (2010), 53.  doi: 10.1016/j.proeng.2010.07.007.  Google Scholar

[5]

W. Daamen and S. Hoogendoorn, "Empirical Differences Between Time Mean Speed and Space Mean Speed,", Traffic and Granular Flow '07, (2009).   Google Scholar

[6]

D. Dieckmann, "Die Feuersicherheit in Theatern,", in German, (1911).   Google Scholar

[7]

J. J. Fruin, "Pedestrian Planning and Design,", Metropolitan Association of Urban Designers and Environmental Planners, (1971).   Google Scholar

[8]

D. Helbing, A. Johansson and H. Al Abideen, Dynamics of crowd disasters: an empirical study,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[9]

S. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks,, Transp. Sc., 39 (2005), 147.  doi: 10.1287/trsc.1040.0102.  Google Scholar

[10]

S. Hoogendoorn and W. Daamen, A novel calibration approach of microscopic pedestrian models,, in [38], ().   Google Scholar

[11]

B. S. Kerner, "The Physics of Traffic,", Springer, (2004).   Google Scholar

[12]

W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008,", Springer, (2010).   Google Scholar

[13]

T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck,, J. Stat. Mech., (2006).  doi: 10.1088/1742-5468/2006/10/P10014.  Google Scholar

[14]

W. Leutzbach, "Introduction to the Theory of Traffic Flow,", Springer, (1988).   Google Scholar

[15]

J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length,", Traffic and Granular Flow 2009, (2009).   Google Scholar

[16]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd,, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755.  doi: 10.1098/rspb.2009.0405.  Google Scholar

[17]

H. Muir, D. Bottomley and C. Marrison, Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress,, Int. Jour. Aviation Psychology, 6 (1996), 57.  doi: 10.1207/s15327108ijap0601_4.  Google Scholar

[18]

K. Müller, "Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden,", Dissertation, (1981).   Google Scholar

[19]

R. Nagai, M. Fukamachi and T. Nagatani, Evacuation of crawlers and walkers from corridor through an exit,, Physica A, 367 (2006), 449.  doi: 10.1016/j.physa.2005.11.031.  Google Scholar

[20]

P. D. Navin and R. J. Wheeler, Pedestrian flow characteristics,, Traffic Engineering, 39 (1969), 31.   Google Scholar

[21]

H. E. Nelson and F. W. Mowrer, Emergency movement,, in, (2002).   Google Scholar

[22]

D. Oeding, "Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fuβgängerverkehrs,", Internal Report, 22 (1963).   Google Scholar

[23]

S. J. Older, Movement of pedestrians on footways in shopping streets,, Traffic Engineering and Control, 10 (1968), 160.   Google Scholar

[24]

V. Popkov and G. Schütz, Steady-state selection in driven diffusive systems with open boundaries,, Europhys. Lett., 48 (1999).  doi: 10.1209/epl/i1999-00474-0.  Google Scholar

[25]

A. Portz and A. Seyfried, Modeling stop-and-go waves in pedestrian dynamics,, in, (2010), 561.   Google Scholar

[26]

V. M. Predtechenskii and A. I. Milinskii, "Planning for Foot Traffic Flow in Buildings,", Amerind Publishing, (1978).   Google Scholar

[27]

B. Pushkarev and J. M. Zupan, Capacity of walkways,, Transp. Res. Rec., 538 (1975), 1.   Google Scholar

[28]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems,", Elsevier, (2010).   Google Scholar

[29]

A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications,, Encyclopedia of Complexity and System Science, (2009).   Google Scholar

[30]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for cellular automata models,, in [38], ().   Google Scholar

[31]

A. Seyfried et al., Cultural effects on the fundamental diagram of pedestrian motion,, in preparation., ().   Google Scholar

[32]

A. Seyfried, M. Boltes, J. Kähler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen and A. Winkens, Enhanced empirical data for the fundamental diagram and the flow through bottlenecks,, in [12], (): 145.   Google Scholar

[33]

A. Seyfried. O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks,, Transp. Sc., 43 (2009), 395.  doi: 10.1287/trsc.1090.0263.  Google Scholar

[34]

A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics,, in, (2010), 496.  doi: 10.1007/978-3-642-15979-4_53.  Google Scholar

[35]

A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments,, Cybernetics and Systems, 40 (2009).   Google Scholar

[36]

A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited,, J. Stat. Mech., (2005).   Google Scholar

[37]

B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter,, Physica A, 389 (2010), 1902.  doi: 10.1016/j.physa.2009.12.015.  Google Scholar

[38]

H. Timmermans, ed., "Pedestrian Behavior,", Emerald, (2009).   Google Scholar

[39]

P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations,, Fire Safety Journal, 24 (1995), 131.  doi: 10.1016/0379-7112(95)00019-P.  Google Scholar

[40]

M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts,, Transp. Res. B, 44 (2010).  doi: 10.1016/j.trb.2010.03.004.  Google Scholar

[41]

U. Weidmann, "Transporttechnik der Fussgänger,", Schriftenreihe des IVT, 90 (1993).   Google Scholar

[42]

J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions,, J. Stat. Mech., (2011).  doi: 10.1088/1742-5468/2011/06/P06004.  Google Scholar

[1]

Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics. Networks & Heterogeneous Media, 2011, 6 (3) : 425-442. doi: 10.3934/nhm.2011.6.425

[2]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks & Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[3]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[4]

Paweł Góra, Abraham Boyarsky, Zhenyang LI, Harald Proppe. Statistical and deterministic dynamics of maps with memory. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4347-4378. doi: 10.3934/dcds.2017186

[5]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[6]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic & Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[7]

Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations & Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005

[8]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[9]

Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675

[10]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[11]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[12]

Bachir Bar, Tewfik Sari. The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019203

[13]

Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827

[14]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[15]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[16]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[17]

David Lubicz. On a classification of finite statistical tests. Advances in Mathematics of Communications, 2007, 1 (4) : 509-524. doi: 10.3934/amc.2007.1.509

[18]

Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004

[19]

Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363

[20]

Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic & Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]