December  2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597

Multiscale model of tumor-derived capillary-like network formation

1. 

Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

2. 

Department of Animal and Human Biology, Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), Center for Complex Systems in Molecular Biology and Medicine (SysBioM), Universitá degli Studi di Torino Via Accademia Albertina 13 10123, Torino, Italy

Received  January 2011 Revised  September 2011 Published  December 2011

Solid tumors recruit and form blood vessels, used for maintenance and growth as well as for formation and spread of metastases. Vascularization is therefore a pivotal switch in cancer malignancy: an accurate analysis of its driving processes is a big issue for the development of treatments. In vitro experiments have demonstrated that cultured tumor-derived endothelial cells (TECs) are able to organize in a connected network, which mimics an in vivo capillary-plexus. The process, called tubulogenesis, is promoted by the activity of soluble peptides (such as VEGFs), as well as by the following intracellular calcium signals. We here propose a multilevel approach, reproducing selected features of the experimental system: it incorporates a continuous model of microscopic VEGF-induced events in a discrete mesoscopic Cellular Potts Model (CPM). The two components are interfaced, producing a multiscale framework characterized by a constant flux of information from finer to coarser levels. The simulation results, in agreement with experimental analysis, allow to identify the key mechanisms of network formation. In particular, we provide evidence that the nascent pattern is characterized by precise topological properties, regulated by the initial cell density in conjunction with the degree of the chemotactic response and the directional persistence of cell migration.
Citation: Marco Scianna, Luca Munaron. Multiscale model of tumor-derived capillary-like network formation. Networks & Heterogeneous Media, 2011, 6 (4) : 597-624. doi: 10.3934/nhm.2011.6.597
References:
[1]

M. A. Albrecht, S. L. Colegrove and D. D. Friel, Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release,, J. Gen. Physiol., 119 (2002), 211.   Google Scholar

[2]

D. Ambrosi, A. Gamba and G. Serini, Cell directional persistence and chemotaxis in vascular morphogenesis,, Bull. Math. Biol., 66 (2004), 1851.  doi: 10.1016/j.bulm.2004.04.004.  Google Scholar

[3]

D. Ambrosi, F. Bussolino and L. Preziosi, A review of vasculogenesis models,, J. Theor. Med., 6 (2005), 1.  doi: 10.1080/1027366042000327098.  Google Scholar

[4]

A. Balter, R. M. Merks, N. J. Poplawski, M. Swat and J. A. Glazier, The Glazier-Graner-Hogeweg model: Extensions, future directions, and opportunities for further study,, in, (2007), 157.  doi: 10.1007/978-3-7643-8123-3_7.  Google Scholar

[5]

P. Baluk, S. Morikawa, A. Haskell, M. Mancuso and D. M. McDonald, Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors,, Am. J. Pathol., 163 (2003), 1801.  doi: 10.1016/S0002-9440(10)63540-7.  Google Scholar

[6]

A. L. Bauer, T. L. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105.  doi: 10.1529/biophysj.106.101501.  Google Scholar

[7]

P. Bayley, P. Ahlstrom, S. R. Martin and S. Forsen, The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies,, Biochem. Biophys. Res. Commun., 120 (1984), 185.  doi: 10.1016/0006-291X(84)91431-1.  Google Scholar

[8]

J. Bennett and A. Weeds, Calcium and the cytoskeleton,, Br. Med. Bull., 42 (1985), 385.   Google Scholar

[9]

M. J. Berridge, M. D. Bootman and H. L. Roderick, Calcium signalling: Dynamics, homeostasis and remodelling,, Nat. Rev. Mol. Cell Biol., 4 (2003), 517.  doi: 10.1038/nrm1155.  Google Scholar

[10]

M. J. Berridge, Calcium signalling and cell proliferation,, Bioessays, 17 (1995), 491.  doi: 10.1002/bies.950170605.  Google Scholar

[11]

L. A. Blatter, Z. Taha, S. Mesaros, P. S. Shacklock, W. G. Wier and T. Malinski, Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells,, Circ. Res., 76 (1995), 922.   Google Scholar

[12]

M. D. Bootman, P. Lipp and M. J. Berridge, The organisation and functions of local Ca2+ signals,, J. Cell. Sci., 114 (2001), 2213.   Google Scholar

[13]

B. Bussolati, M. C. Deregibus and G. Camussi, Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies,, Curr. Vasc. Pharmacol., 8 (2010), 220.  doi: 10.2174/157016110790887036.  Google Scholar

[14]

B. Bussolati, I. Deambrosis, S. Russo, M. C. Deregibus and G. Camussi, Altered angiogenesis and survival in human tumor-derived endothelial cells,, FASEB J., 17 (2003), 1159.   Google Scholar

[15]

B. Bussolati, C. Grange and G. Camussi, Tumor exploits alternative strategies to achieve vascularization,, FASEB J., 25 (2011), 2874.  doi: 10.1096/fj.10-180323.  Google Scholar

[16]

F. Bussolino, M. Arese, E. Audero, E. Giraudo, S. Marchio, S. Mitola, L. Primo and G. Serini, Biological aspects in tumor angiogenesis,, in, (2003), 1.   Google Scholar

[17]

Y. Cao, H. Chen, L. Zhou, M. K. Chiang, B. Anand-Apte, J. A. Weatherbee, Y. Wang, F. Fang, J. G. Flanagan and M. L. Tsang, Heterodimers of placenta growth factor/ vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to flk-1/kdr,, J. Biol. Chem., 271 (1996), 3154.   Google Scholar

[18]

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249.  doi: 10.1038/35025220.  Google Scholar

[19]

P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932.  doi: 10.1038/nature04478.  Google Scholar

[20]

P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer,, Oncology, 69 (2005), 4.  doi: 10.1159/000088478.  Google Scholar

[21]

P. D. Chilibeck, D. H. Paterson, D. A. Cunningham, A. W. Taylor and E. G. Noble, Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals,, J. Appl. Physiol., 82 (1997), 63.   Google Scholar

[22]

W. Coatesworth and S. Bolsover, Calcium signal transmission in chick sensory neurones is diffusion based,, Cell Calcium, 43 (2008), 236.  doi: 10.1016/j.ceca.2007.05.016.  Google Scholar

[23]

K. De Bock, S. Cauwenberghs and P. Carmeliet, Vessel abnormalization: Another hallmark of cancer? Molecular mechanisms and therapeutic implications,, Curr. Opin. Genet. Dev., 21 (2011), 73.  doi: 10.1016/j.gde.2010.10.008.  Google Scholar

[24]

C. J. Drake, A. LaRue, N. Ferrara and C. D. Little, VEGF regulates cell behavior during vasculogenesis,, Dev. Biol., 224 (2000), 178.  doi: 10.1006/dbio.2000.9744.  Google Scholar

[25]

N. Ferrara, VEGF and the quest for tumour angiogenesis factors,, Nat. Rev. Cancer, 2 (2002), 795.  doi: 10.1038/nrc909.  Google Scholar

[26]

N. Ferrara and R. S. Kerbel, Angiogenesis as a therapeutic target,, Nature, 438 (2005), 967.  doi: 10.1038/nature04483.  Google Scholar

[27]

C. C. Fink, B. Slepchenko, Moraru, II, J. Watras, J. C. Schaff and L. M. Loew, An image-based model of calcium waves in differentiated neuroblastoma cells,, Biophys. J., 79 (2000), 163.  doi: 10.1016/S0006-3495(00)76281-3.  Google Scholar

[28]

A. Fiorio Pla, C. Grange, S. Antoniotti, C. Tomatis, A. Merlino, B. Bussolati and L. Munaron, Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis,, Mol. Cancer Res., 6 (2008), 535.   Google Scholar

[29]

A. Fiorio Pla and L. Munaron, Calcium influx, arachidonic acid, and control of endothelial cell proliferation,, Cell Calcium, 30 (2001), 235.  doi: 10.1054/ceca.2001.0234.  Google Scholar

[30]

A. Fiorio Pla, T. Genova, E. Pupo, C. Tomatis, A. Genazzani, R. Zaninetti and L. Munaron, Multiple roles of protein kinase a in arachidonic acid-mediated ca2+ entry and tumor-derived human endothelial cell migration,, Mol. Cancer Res., 8 (2010), 1466.  doi: 10.1158/1541-7786.MCR-10-0002.  Google Scholar

[31]

A. Fiorio Pla, H. L. Ong, K. T. Cheng, A. Brossa, B. Bussolati, T. Lockwich, B. Paria, L. Munaron and I. S. Ambudkar, TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling,, Oncogene, (2011).  doi: 10.1038/onc.2011.231.  Google Scholar

[32]

D. Fukumura, D. G. Duda, L. L. Munn and R. K. Jain, Tumor microvasculature and microenvironment: Novel insights through intravital imaging in pre-clinical models,, Microcirculation, 17 (2010), 206.  doi: 10.1111/j.1549-8719.2010.00029.x.  Google Scholar

[33]

A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Letters, 90 (2003), 118101.  doi: 10.1103/PhysRevLett.90.118101.  Google Scholar

[34]

J. A. Glazier, A. Balter and N. J. Poplawski, Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model,, in, (2007), 79.   Google Scholar

[35]

J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells,, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), 2128.  doi: 10.1103/PhysRevE.47.2128.  Google Scholar

[36]

Y. Goto, M. Miura and T. Iijima, Extrusion mechanisms of intracellular Ca2+ in human aortic endothelial cells,, Eur. J. Pharmacol., 314 (1996), 185.  doi: 10.1016/S0014-2999(96)00532-8.  Google Scholar

[37]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model,, Phys. Rev. Lett., 69 (1992), 2013.  doi: 10.1103/PhysRevLett.69.2013.  Google Scholar

[38]

C. Grange, B. Bussolati, S. Bruno, V. Fonsato, A. Sapino and G. Camussi, Isolation and characterization of human breast tumor-derived endothelial cells,, Oncol. Rep., 15 (2006), 381.   Google Scholar

[39]

A. C. Guyton and J. E. Hall, "Textbook of Medical Physiology," 10th edition,, W. B. Sauders, (2000).   Google Scholar

[40]

L. V. Hryshko and K. D. Philipson, Sodium-calcium exchange: recent advances,, Basic Res. Cardiol., 92 (1997), 45.  doi: 10.1007/BF00794067.  Google Scholar

[41]

S. Huang, C. P. Brangwynne, K. K. Parker and D. E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistence,, Cell Motil. Cytoskeleton., 61 (2005), 201.  doi: 10.1002/cm.20077.  Google Scholar

[42]

H. Kimura and H. Esumi, Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis,, Acta Biochim. Pol., 50 (2003), 49.   Google Scholar

[43]

J. Klingauf and E. Neher, Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells,, Biophys. J., 72 (1997), 674.   Google Scholar

[44]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, Journal of Mathematical Analysis and Applications, 305 (2005), 566.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar

[45]

M. Kowanetz and N. Ferrara, Vascular endothelial growth factor signaling pathways: Therapeutic perspective,, Clin. Cancer Res., 12 (2006), 5018.  doi: 10.1158/1078-0432.CCR-06-1520.  Google Scholar

[46]

J. R. Lancaster, A tutorial on the diffusibility and reactivity of free nitric oxide,, Nitric Oxide, 1 (1997), 18.  doi: 10.1006/niox.1996.0112.  Google Scholar

[47]

A. W. Mahoney, B. G. Smith, N. S. Flann and G. J. Podgorski, Discovering novel cancer therapies: A computational modeling and search approach,, in, (2008), 233.   Google Scholar

[48]

D. Manoussaki, S. R. Lubkin, R. B. Vernon and J. D. Murray, A mechanical model for the formation of vascular networks in vitro,, Acta Biotheor., 44 (1996), 271.  doi: 10.1007/BF00046533.  Google Scholar

[49]

A. F. M arée, V. A. Grieneisen and P. Hogeweg, The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis,, in, (2007), 107.   Google Scholar

[50]

A. F. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen and L. Edelstein-Keshet, Polarization and movement of keratocytes: A multiscale modelling approach,, Bull. Math. Biol., 68 (2006), 1169.  doi: 10.1007/s11538-006-9131-7.  Google Scholar

[51]

R. M. Merks and J. A. Glazier, Dynamic mechanisms of blood vessel growth,, Nonlinearity, 19 (2006).  doi: 10.1088/0951-7715/19/1/000.  Google Scholar

[52]

R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman and J. A. Glazier, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling,, Dev. Biol., 289 (2006), 44.  doi: 10.1016/j.ydbio.2005.10.003.  Google Scholar

[53]

R. M. Merks, E. D. Perryn, A. Shirinifard and J. A. Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood vessel growth,, PLoS Comput. Biol., 4 (2008).   Google Scholar

[54]

R. M. Merks and P. Koolwijk, Modeling morphogenesis in silico and in vitro: Towards quantitative, predictive, cell-based modeling,, Math. Model Nat. Phenom., 4 (2009), 149.  doi: 10.1051/mmnp/20094406.  Google Scholar

[55]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087.  doi: 10.1063/1.1699114.  Google Scholar

[56]

A. Mottola, S. Antoniotti, D. Lovisolo and L. Munaron, Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells,, FASEB J., 19 (2005), 2075.   Google Scholar

[57]

L. Munaron, Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review),, Int. J. Mol. Med., 10 (2002).   Google Scholar

[58]

L. Munaron, Intracellular calcium, endothelial cells and angiogenesis,, Recent Patents Anticancer Drug Discov., 1 (2002), 105.  doi: 10.2174/157489206775246502.  Google Scholar

[59]

L. Munaron, C. Tomatis and A. Fiorio Pla, The secret marriage between calcium and tumor angiogenesis,, Technol. Cancer Res. Treat., 7 (2008), 335.   Google Scholar

[60]

L. Munaron, A tridimensional model of proangiogenic calcium signals in endothelial cells,, The Open Biology Journal, 2 (2009), 114.  doi: 10.2174/1874196700902010114.  Google Scholar

[61]

L. Munaron and A. Fiorio Pla, Endothelial calcium machinery and angiogenesis: Understanding physiology to interfere with pathology,, Curr. Med. Chem., 16 (2009), 4691.  doi: 10.2174/092986709789878210.  Google Scholar

[62]

P. Namy, J. Ohayon and P. Tracqui, Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields,, J. Theor. Biol., 227 (2004), 103.  doi: 10.1016/j.jtbi.2003.10.015.  Google Scholar

[63]

B. S. Parker, P. Argani, B. P. Cook, H. Liangfeng, S. D. Chartrand, M. Zhang, S. Saha, A. Bardelli, Y. Jiang, T. B. St Martin, M. Nacht, B. A. Teicher, K. W. Klinger, S. Sukumar and S. L. Madden, Alterations in vascular gene expression in invasive breast carcinoma,, Cancer Res., 64 (2004), 7857.  doi: 10.1158/0008-5472.CAN-04-1976.  Google Scholar

[64]

A. M. Patton, J. Kassis, H. Doong and E. C. Kohn, Calcium as a molecular target in angiogenesis,, Curr. Pharm. Des., 9 (2003), 543.  doi: 10.2174/1381612033391559.  Google Scholar

[65]

E. D. Perryn, A. Czirok and C. D. Little, Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility,, Dev. Biol., 313 (2008), 545.  doi: 10.1016/j.ydbio.2007.10.036.  Google Scholar

[66]

J. S. Pollock, U. Forstermann, J. A. Mitchell, T. D. Warner, H. H. Schmidt, M. Nakane and F. Murad, Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells,, Proc. Natl. Acad. Sci. USA, 88 (1991), 10480.  doi: 10.1073/pnas.88.23.10480.  Google Scholar

[67]

N. J. Poplawski, A. Shirinifard, M. Swat and J. A. Glazier, Simulation od single-species bacterical-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment,, Math. Biosci. Eng., 5 (2008), 355.  doi: 10.3934/mbe.2008.5.355.  Google Scholar

[68]

J. J. Saucerman, J. Zhang, J. C. Martin, L. X. Peng, A. E. Stenbit, R. Y. Tsien and A. D. McCulloch, Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes,, Proc. Natl. Acad. Sci. USA, 103 (2006), 12923.  doi: 10.1073/pnas.0600137103.  Google Scholar

[69]

N. J. Savill and P. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs,, J. Theor. Biol., 184 (1997), 118.  doi: 10.1006/jtbi.1996.0237.  Google Scholar

[70]

M. Scianna, A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell,, Bull. Math. Biol., (2011).  doi: 10.1007/s11538-011-9695-8.  Google Scholar

[71]

M. Scianna, L. Munaron and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies,, Prog. Biophys. Mol. Biol., 106 (2011), 450.  doi: 10.1016/j.pbiomolbio.2011.01.004.  Google Scholar

[72]

M. Scianna and L. Preziosi, Multiscale developments of the Cellular Potts Model,, (2011), (2011).   Google Scholar

[73]

S. Seaman, J. Stevens, M. Y. Yang, D. Logsdon, C. Graff-Cherry and B. St Croix, Genes that distinguish physiological and pathological angiogenesis,, Cancer Cell, 11 (2007), 539.  doi: 10.1016/j.ccr.2007.04.017.  Google Scholar

[74]

G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi and F. Bussolino, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771.  doi: 10.1093/emboj/cdg176.  Google Scholar

[75]

F. Shojaei and N. Ferrara, Antiangiogenic therapy for cancer: An update,, Cancer J., 13 (2007), 345.  doi: 10.1097/PPO.0b013e31815a7b69.  Google Scholar

[76]

J. Sneyd, J. Keizer and M. J. Sanderson, Mechanisms of calcium oscillations and waves: A quantitative analysis,, FASEB J., 9 (1995), 1463.   Google Scholar

[77]

M. S. Steinberg, Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation,, Science, 141 (1963), 401.  doi: 10.1126/science.141.3579.401.  Google Scholar

[78]

M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells,, J. Exp. Zool., 171 (1970), 395.  doi: 10.1002/jez.1401730406.  Google Scholar

[79]

O. Straume, H. B. Salvesen and L. A. Akslen, Angiogenesis is prognostically important in vertical growth phase melanomas,, Int. J. Oncol., 5 (1999), 595.   Google Scholar

[80]

C. Tomatis, A. Fiorio Pla and L. Munaron, Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells,, Cell Calcium, 41 (2007), 261.  doi: 10.1016/j.ceca.2006.07.003.  Google Scholar

[81]

A. Tosin, D. Ambrosi and L. Preziosi,, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Bull. Math. Biol., 68 (2006), 1819.  doi: 10.1007/s11538-006-9071-2.  Google Scholar

[82]

P. A. Valant, P. N. Adjei and D. H. Haynes, Rapid Ca2+ extrusion via the Na+/Ca2+ exchanger of the human platelet,, J. Membr. Biol., 130 (1992), 63.  doi: 10.1007/BF00233739.  Google Scholar

[83]

E. L. Watson, K. L. Jacobson, J. C. Singh and D. H. Di Julio, Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide,, Cell Signal, 13 (2004), 157.  doi: 10.1016/S0898-6568(03)00102-5.  Google Scholar

show all references

References:
[1]

M. A. Albrecht, S. L. Colegrove and D. D. Friel, Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release,, J. Gen. Physiol., 119 (2002), 211.   Google Scholar

[2]

D. Ambrosi, A. Gamba and G. Serini, Cell directional persistence and chemotaxis in vascular morphogenesis,, Bull. Math. Biol., 66 (2004), 1851.  doi: 10.1016/j.bulm.2004.04.004.  Google Scholar

[3]

D. Ambrosi, F. Bussolino and L. Preziosi, A review of vasculogenesis models,, J. Theor. Med., 6 (2005), 1.  doi: 10.1080/1027366042000327098.  Google Scholar

[4]

A. Balter, R. M. Merks, N. J. Poplawski, M. Swat and J. A. Glazier, The Glazier-Graner-Hogeweg model: Extensions, future directions, and opportunities for further study,, in, (2007), 157.  doi: 10.1007/978-3-7643-8123-3_7.  Google Scholar

[5]

P. Baluk, S. Morikawa, A. Haskell, M. Mancuso and D. M. McDonald, Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors,, Am. J. Pathol., 163 (2003), 1801.  doi: 10.1016/S0002-9440(10)63540-7.  Google Scholar

[6]

A. L. Bauer, T. L. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105.  doi: 10.1529/biophysj.106.101501.  Google Scholar

[7]

P. Bayley, P. Ahlstrom, S. R. Martin and S. Forsen, The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies,, Biochem. Biophys. Res. Commun., 120 (1984), 185.  doi: 10.1016/0006-291X(84)91431-1.  Google Scholar

[8]

J. Bennett and A. Weeds, Calcium and the cytoskeleton,, Br. Med. Bull., 42 (1985), 385.   Google Scholar

[9]

M. J. Berridge, M. D. Bootman and H. L. Roderick, Calcium signalling: Dynamics, homeostasis and remodelling,, Nat. Rev. Mol. Cell Biol., 4 (2003), 517.  doi: 10.1038/nrm1155.  Google Scholar

[10]

M. J. Berridge, Calcium signalling and cell proliferation,, Bioessays, 17 (1995), 491.  doi: 10.1002/bies.950170605.  Google Scholar

[11]

L. A. Blatter, Z. Taha, S. Mesaros, P. S. Shacklock, W. G. Wier and T. Malinski, Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells,, Circ. Res., 76 (1995), 922.   Google Scholar

[12]

M. D. Bootman, P. Lipp and M. J. Berridge, The organisation and functions of local Ca2+ signals,, J. Cell. Sci., 114 (2001), 2213.   Google Scholar

[13]

B. Bussolati, M. C. Deregibus and G. Camussi, Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies,, Curr. Vasc. Pharmacol., 8 (2010), 220.  doi: 10.2174/157016110790887036.  Google Scholar

[14]

B. Bussolati, I. Deambrosis, S. Russo, M. C. Deregibus and G. Camussi, Altered angiogenesis and survival in human tumor-derived endothelial cells,, FASEB J., 17 (2003), 1159.   Google Scholar

[15]

B. Bussolati, C. Grange and G. Camussi, Tumor exploits alternative strategies to achieve vascularization,, FASEB J., 25 (2011), 2874.  doi: 10.1096/fj.10-180323.  Google Scholar

[16]

F. Bussolino, M. Arese, E. Audero, E. Giraudo, S. Marchio, S. Mitola, L. Primo and G. Serini, Biological aspects in tumor angiogenesis,, in, (2003), 1.   Google Scholar

[17]

Y. Cao, H. Chen, L. Zhou, M. K. Chiang, B. Anand-Apte, J. A. Weatherbee, Y. Wang, F. Fang, J. G. Flanagan and M. L. Tsang, Heterodimers of placenta growth factor/ vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to flk-1/kdr,, J. Biol. Chem., 271 (1996), 3154.   Google Scholar

[18]

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249.  doi: 10.1038/35025220.  Google Scholar

[19]

P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932.  doi: 10.1038/nature04478.  Google Scholar

[20]

P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer,, Oncology, 69 (2005), 4.  doi: 10.1159/000088478.  Google Scholar

[21]

P. D. Chilibeck, D. H. Paterson, D. A. Cunningham, A. W. Taylor and E. G. Noble, Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals,, J. Appl. Physiol., 82 (1997), 63.   Google Scholar

[22]

W. Coatesworth and S. Bolsover, Calcium signal transmission in chick sensory neurones is diffusion based,, Cell Calcium, 43 (2008), 236.  doi: 10.1016/j.ceca.2007.05.016.  Google Scholar

[23]

K. De Bock, S. Cauwenberghs and P. Carmeliet, Vessel abnormalization: Another hallmark of cancer? Molecular mechanisms and therapeutic implications,, Curr. Opin. Genet. Dev., 21 (2011), 73.  doi: 10.1016/j.gde.2010.10.008.  Google Scholar

[24]

C. J. Drake, A. LaRue, N. Ferrara and C. D. Little, VEGF regulates cell behavior during vasculogenesis,, Dev. Biol., 224 (2000), 178.  doi: 10.1006/dbio.2000.9744.  Google Scholar

[25]

N. Ferrara, VEGF and the quest for tumour angiogenesis factors,, Nat. Rev. Cancer, 2 (2002), 795.  doi: 10.1038/nrc909.  Google Scholar

[26]

N. Ferrara and R. S. Kerbel, Angiogenesis as a therapeutic target,, Nature, 438 (2005), 967.  doi: 10.1038/nature04483.  Google Scholar

[27]

C. C. Fink, B. Slepchenko, Moraru, II, J. Watras, J. C. Schaff and L. M. Loew, An image-based model of calcium waves in differentiated neuroblastoma cells,, Biophys. J., 79 (2000), 163.  doi: 10.1016/S0006-3495(00)76281-3.  Google Scholar

[28]

A. Fiorio Pla, C. Grange, S. Antoniotti, C. Tomatis, A. Merlino, B. Bussolati and L. Munaron, Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis,, Mol. Cancer Res., 6 (2008), 535.   Google Scholar

[29]

A. Fiorio Pla and L. Munaron, Calcium influx, arachidonic acid, and control of endothelial cell proliferation,, Cell Calcium, 30 (2001), 235.  doi: 10.1054/ceca.2001.0234.  Google Scholar

[30]

A. Fiorio Pla, T. Genova, E. Pupo, C. Tomatis, A. Genazzani, R. Zaninetti and L. Munaron, Multiple roles of protein kinase a in arachidonic acid-mediated ca2+ entry and tumor-derived human endothelial cell migration,, Mol. Cancer Res., 8 (2010), 1466.  doi: 10.1158/1541-7786.MCR-10-0002.  Google Scholar

[31]

A. Fiorio Pla, H. L. Ong, K. T. Cheng, A. Brossa, B. Bussolati, T. Lockwich, B. Paria, L. Munaron and I. S. Ambudkar, TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling,, Oncogene, (2011).  doi: 10.1038/onc.2011.231.  Google Scholar

[32]

D. Fukumura, D. G. Duda, L. L. Munn and R. K. Jain, Tumor microvasculature and microenvironment: Novel insights through intravital imaging in pre-clinical models,, Microcirculation, 17 (2010), 206.  doi: 10.1111/j.1549-8719.2010.00029.x.  Google Scholar

[33]

A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Letters, 90 (2003), 118101.  doi: 10.1103/PhysRevLett.90.118101.  Google Scholar

[34]

J. A. Glazier, A. Balter and N. J. Poplawski, Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model,, in, (2007), 79.   Google Scholar

[35]

J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells,, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), 2128.  doi: 10.1103/PhysRevE.47.2128.  Google Scholar

[36]

Y. Goto, M. Miura and T. Iijima, Extrusion mechanisms of intracellular Ca2+ in human aortic endothelial cells,, Eur. J. Pharmacol., 314 (1996), 185.  doi: 10.1016/S0014-2999(96)00532-8.  Google Scholar

[37]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model,, Phys. Rev. Lett., 69 (1992), 2013.  doi: 10.1103/PhysRevLett.69.2013.  Google Scholar

[38]

C. Grange, B. Bussolati, S. Bruno, V. Fonsato, A. Sapino and G. Camussi, Isolation and characterization of human breast tumor-derived endothelial cells,, Oncol. Rep., 15 (2006), 381.   Google Scholar

[39]

A. C. Guyton and J. E. Hall, "Textbook of Medical Physiology," 10th edition,, W. B. Sauders, (2000).   Google Scholar

[40]

L. V. Hryshko and K. D. Philipson, Sodium-calcium exchange: recent advances,, Basic Res. Cardiol., 92 (1997), 45.  doi: 10.1007/BF00794067.  Google Scholar

[41]

S. Huang, C. P. Brangwynne, K. K. Parker and D. E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistence,, Cell Motil. Cytoskeleton., 61 (2005), 201.  doi: 10.1002/cm.20077.  Google Scholar

[42]

H. Kimura and H. Esumi, Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis,, Acta Biochim. Pol., 50 (2003), 49.   Google Scholar

[43]

J. Klingauf and E. Neher, Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells,, Biophys. J., 72 (1997), 674.   Google Scholar

[44]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, Journal of Mathematical Analysis and Applications, 305 (2005), 566.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar

[45]

M. Kowanetz and N. Ferrara, Vascular endothelial growth factor signaling pathways: Therapeutic perspective,, Clin. Cancer Res., 12 (2006), 5018.  doi: 10.1158/1078-0432.CCR-06-1520.  Google Scholar

[46]

J. R. Lancaster, A tutorial on the diffusibility and reactivity of free nitric oxide,, Nitric Oxide, 1 (1997), 18.  doi: 10.1006/niox.1996.0112.  Google Scholar

[47]

A. W. Mahoney, B. G. Smith, N. S. Flann and G. J. Podgorski, Discovering novel cancer therapies: A computational modeling and search approach,, in, (2008), 233.   Google Scholar

[48]

D. Manoussaki, S. R. Lubkin, R. B. Vernon and J. D. Murray, A mechanical model for the formation of vascular networks in vitro,, Acta Biotheor., 44 (1996), 271.  doi: 10.1007/BF00046533.  Google Scholar

[49]

A. F. M arée, V. A. Grieneisen and P. Hogeweg, The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis,, in, (2007), 107.   Google Scholar

[50]

A. F. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen and L. Edelstein-Keshet, Polarization and movement of keratocytes: A multiscale modelling approach,, Bull. Math. Biol., 68 (2006), 1169.  doi: 10.1007/s11538-006-9131-7.  Google Scholar

[51]

R. M. Merks and J. A. Glazier, Dynamic mechanisms of blood vessel growth,, Nonlinearity, 19 (2006).  doi: 10.1088/0951-7715/19/1/000.  Google Scholar

[52]

R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman and J. A. Glazier, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling,, Dev. Biol., 289 (2006), 44.  doi: 10.1016/j.ydbio.2005.10.003.  Google Scholar

[53]

R. M. Merks, E. D. Perryn, A. Shirinifard and J. A. Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood vessel growth,, PLoS Comput. Biol., 4 (2008).   Google Scholar

[54]

R. M. Merks and P. Koolwijk, Modeling morphogenesis in silico and in vitro: Towards quantitative, predictive, cell-based modeling,, Math. Model Nat. Phenom., 4 (2009), 149.  doi: 10.1051/mmnp/20094406.  Google Scholar

[55]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087.  doi: 10.1063/1.1699114.  Google Scholar

[56]

A. Mottola, S. Antoniotti, D. Lovisolo and L. Munaron, Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells,, FASEB J., 19 (2005), 2075.   Google Scholar

[57]

L. Munaron, Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review),, Int. J. Mol. Med., 10 (2002).   Google Scholar

[58]

L. Munaron, Intracellular calcium, endothelial cells and angiogenesis,, Recent Patents Anticancer Drug Discov., 1 (2002), 105.  doi: 10.2174/157489206775246502.  Google Scholar

[59]

L. Munaron, C. Tomatis and A. Fiorio Pla, The secret marriage between calcium and tumor angiogenesis,, Technol. Cancer Res. Treat., 7 (2008), 335.   Google Scholar

[60]

L. Munaron, A tridimensional model of proangiogenic calcium signals in endothelial cells,, The Open Biology Journal, 2 (2009), 114.  doi: 10.2174/1874196700902010114.  Google Scholar

[61]

L. Munaron and A. Fiorio Pla, Endothelial calcium machinery and angiogenesis: Understanding physiology to interfere with pathology,, Curr. Med. Chem., 16 (2009), 4691.  doi: 10.2174/092986709789878210.  Google Scholar

[62]

P. Namy, J. Ohayon and P. Tracqui, Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields,, J. Theor. Biol., 227 (2004), 103.  doi: 10.1016/j.jtbi.2003.10.015.  Google Scholar

[63]

B. S. Parker, P. Argani, B. P. Cook, H. Liangfeng, S. D. Chartrand, M. Zhang, S. Saha, A. Bardelli, Y. Jiang, T. B. St Martin, M. Nacht, B. A. Teicher, K. W. Klinger, S. Sukumar and S. L. Madden, Alterations in vascular gene expression in invasive breast carcinoma,, Cancer Res., 64 (2004), 7857.  doi: 10.1158/0008-5472.CAN-04-1976.  Google Scholar

[64]

A. M. Patton, J. Kassis, H. Doong and E. C. Kohn, Calcium as a molecular target in angiogenesis,, Curr. Pharm. Des., 9 (2003), 543.  doi: 10.2174/1381612033391559.  Google Scholar

[65]

E. D. Perryn, A. Czirok and C. D. Little, Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility,, Dev. Biol., 313 (2008), 545.  doi: 10.1016/j.ydbio.2007.10.036.  Google Scholar

[66]

J. S. Pollock, U. Forstermann, J. A. Mitchell, T. D. Warner, H. H. Schmidt, M. Nakane and F. Murad, Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells,, Proc. Natl. Acad. Sci. USA, 88 (1991), 10480.  doi: 10.1073/pnas.88.23.10480.  Google Scholar

[67]

N. J. Poplawski, A. Shirinifard, M. Swat and J. A. Glazier, Simulation od single-species bacterical-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment,, Math. Biosci. Eng., 5 (2008), 355.  doi: 10.3934/mbe.2008.5.355.  Google Scholar

[68]

J. J. Saucerman, J. Zhang, J. C. Martin, L. X. Peng, A. E. Stenbit, R. Y. Tsien and A. D. McCulloch, Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes,, Proc. Natl. Acad. Sci. USA, 103 (2006), 12923.  doi: 10.1073/pnas.0600137103.  Google Scholar

[69]

N. J. Savill and P. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs,, J. Theor. Biol., 184 (1997), 118.  doi: 10.1006/jtbi.1996.0237.  Google Scholar

[70]

M. Scianna, A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell,, Bull. Math. Biol., (2011).  doi: 10.1007/s11538-011-9695-8.  Google Scholar

[71]

M. Scianna, L. Munaron and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies,, Prog. Biophys. Mol. Biol., 106 (2011), 450.  doi: 10.1016/j.pbiomolbio.2011.01.004.  Google Scholar

[72]

M. Scianna and L. Preziosi, Multiscale developments of the Cellular Potts Model,, (2011), (2011).   Google Scholar

[73]

S. Seaman, J. Stevens, M. Y. Yang, D. Logsdon, C. Graff-Cherry and B. St Croix, Genes that distinguish physiological and pathological angiogenesis,, Cancer Cell, 11 (2007), 539.  doi: 10.1016/j.ccr.2007.04.017.  Google Scholar

[74]

G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi and F. Bussolino, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771.  doi: 10.1093/emboj/cdg176.  Google Scholar

[75]

F. Shojaei and N. Ferrara, Antiangiogenic therapy for cancer: An update,, Cancer J., 13 (2007), 345.  doi: 10.1097/PPO.0b013e31815a7b69.  Google Scholar

[76]

J. Sneyd, J. Keizer and M. J. Sanderson, Mechanisms of calcium oscillations and waves: A quantitative analysis,, FASEB J., 9 (1995), 1463.   Google Scholar

[77]

M. S. Steinberg, Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation,, Science, 141 (1963), 401.  doi: 10.1126/science.141.3579.401.  Google Scholar

[78]

M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells,, J. Exp. Zool., 171 (1970), 395.  doi: 10.1002/jez.1401730406.  Google Scholar

[79]

O. Straume, H. B. Salvesen and L. A. Akslen, Angiogenesis is prognostically important in vertical growth phase melanomas,, Int. J. Oncol., 5 (1999), 595.   Google Scholar

[80]

C. Tomatis, A. Fiorio Pla and L. Munaron, Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells,, Cell Calcium, 41 (2007), 261.  doi: 10.1016/j.ceca.2006.07.003.  Google Scholar

[81]

A. Tosin, D. Ambrosi and L. Preziosi,, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Bull. Math. Biol., 68 (2006), 1819.  doi: 10.1007/s11538-006-9071-2.  Google Scholar

[82]

P. A. Valant, P. N. Adjei and D. H. Haynes, Rapid Ca2+ extrusion via the Na+/Ca2+ exchanger of the human platelet,, J. Membr. Biol., 130 (1992), 63.  doi: 10.1007/BF00233739.  Google Scholar

[83]

E. L. Watson, K. L. Jacobson, J. C. Singh and D. H. Di Julio, Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide,, Cell Signal, 13 (2004), 157.  doi: 10.1016/S0898-6568(03)00102-5.  Google Scholar

[1]

Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1109-1154. doi: 10.3934/dcdsb.2013.18.1109

[2]

V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621

[3]

Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235

[4]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[5]

Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1157-1172. doi: 10.3934/mbe.2015.12.1157

[6]

Justin P. Peters, Khalid Boushaba, Marit Nilsen-Hamilton. A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme. Mathematical Biosciences & Engineering, 2005, 2 (4) : 789-810. doi: 10.3934/mbe.2005.2.789

[7]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[8]

Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016

[9]

Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057

[10]

Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini. The impact of cell crowding and active cell movement on vascular tumour growth. Networks & Heterogeneous Media, 2006, 1 (4) : 515-535. doi: 10.3934/nhm.2006.1.515

[11]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[12]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[13]

Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973

[14]

Xuchen Lin, Ting-Jie Lu, Xia Chen. Total factor productivity growth and technological change in the telecommunications industry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 795-809. doi: 10.3934/dcdss.2019053

[15]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[16]

Alexandra Fronville, Abdoulaye Sarr, Vincent Rodin. Modelling multi-cellular growth using morphological analysis. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 83-99. doi: 10.3934/dcdsb.2017004

[17]

Julie Joie, Yifeng Lei, Marie-Christine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1059-1076. doi: 10.3934/dcdsb.2015.20.1059

[18]

Claude-Michel Brauner, Michael L. Frankel, Josephus Hulshof, Alessandra Lunardi, G. Sivashinsky. On the κ - θ model of cellular flames: Existence in the large and asymptotics. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 27-39. doi: 10.3934/dcdss.2008.1.27

[19]

Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 501-522. doi: 10.3934/dcds.2005.12.501

[20]

Amparo Gil, Virginia González-Vélez, Javier Segura, Luis Miguel Gutiérrez. A theoretical study of factors influencing calcium-secretion coupling in a presynaptic active zone model. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1027-1043. doi: 10.3934/mbe.2014.11.1027

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]