March  2011, 6(1): 61-75. doi: 10.3934/nhm.2011.6.61

On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems

1. 

Dip. di Matematica Pura e Applicata, Univ. dell'Aquila, loc. Monteluco di Roio, 67040 l'Aquila, Italy

2. 

Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Trieste 63, 35121 Padova

Received  October 2009 Revised  May 2010 Published  March 2011

This paper concerns periodic multiscale homogenization for fully nonlinear equations of the form $u^\epsilon+H^\epsilon (x,\frac{x}{\epsilon},\ldots,\frac{x}{epsilon^k},Du^\epsilon,D^2u^\epsilon)=0$. The operators $H^\epsilon$ are a regular perturbations of some uniformly elliptic, convex operator $H$. As $\epsilon\to 0^+$, the solutions $u^\epsilon$ converge locally uniformly to the solution $u$ of a suitably defined effective problem. The purpose of this paper is to obtain an estimate of the corresponding rate of convergence. Finally, some examples are discussed.
Citation: Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61
References:
[1]

O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control,, SIAM J. Control Optim., 40 (2001), 1159.  doi: 10.1137/S0363012900366741.  Google Scholar

[2]

O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result,, Arch. Ration. Mech. Anal., 170 (2003), 17.  doi: 10.1007/s00205-003-0266-5.  Google Scholar

[3]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equation,, Mem. Amer. Math. Soc., 204 (2010).   Google Scholar

[4]

O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenizations for second-order Hamilton-Jacobi equations,, J. Differential Equations, 243 (2007), 349.  doi: 10.1016/j.jde.2007.05.027.  Google Scholar

[5]

O. Alvarez, M. Bardi and C. Marchi, Multiscale singular perturbation and homogenization of optimal control problems,, in, (2008), 1.   Google Scholar

[6]

M. Arisawa and P. L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.   Google Scholar

[7]

G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations,, M2AN Math. Model. Numer. Anal., 36 (2002), 33.  doi: 10.1051/m2an:2002002.  Google Scholar

[8]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Clarendon Press, (1998).   Google Scholar

[9]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,'', North-Holland, (1978).   Google Scholar

[10]

L. A. Caffarelli, P. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media,, Comm. Pure Appl. Math., 58 (2005), 319.  doi: 10.1002/cpa.20069.  Google Scholar

[11]

F. Camilli and C. Marchi, Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs,, Nonlinearity, 22 (2009), 1481.  doi: 10.1088/0951-7715/22/6/011.  Google Scholar

[12]

I. Capuzzo Dolcetta and H. Ishii, On the rate of convergence in Homogenization of Hamilton-Jacobi equations,, Indiana Univ. Math. J., 50 (2001), 1113.  doi: 10.1512/iumj.2001.50.1933.  Google Scholar

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.   Google Scholar

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear P.D.E.,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.   Google Scholar

[15]

L. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.   Google Scholar

[16]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Springer-Verlag, (1993).   Google Scholar

[17]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-players, zero-sum stochastic differential games,, Indiana Univ. Math. J., 38 (1989), 293.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 2nd, edition, (1983).   Google Scholar

[19]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,'', Springer, (1994).   Google Scholar

[20]

N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients,, Probab. Theory Related Fields, 117 (2000), 1.  doi: 10.1007/s004400050264.  Google Scholar

[21]

O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,'', Academic Press, (1968).   Google Scholar

[22]

P. L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations,, Unpublished, (1986).   Google Scholar

[23]

P.L. Lions and P. Souganidis, Homogenization of "viscous'' Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Differential Equations, 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[24]

P. L. Lions and P. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 667.  doi: 10.1016/j.anihpc.2004.10.009.  Google Scholar

[25]

C. Marchi, Rate of convergence for multiscale homogenization of Hamilton-Jacobi equations,, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 519.  doi: 10.1017/S0308210507000704.  Google Scholar

[26]

M. V. Safonov, Classical solution of nonlinear elliptic equations of second-order,, Math. USSR-Izv., 33 (1989), 597.   Google Scholar

show all references

References:
[1]

O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control,, SIAM J. Control Optim., 40 (2001), 1159.  doi: 10.1137/S0363012900366741.  Google Scholar

[2]

O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result,, Arch. Ration. Mech. Anal., 170 (2003), 17.  doi: 10.1007/s00205-003-0266-5.  Google Scholar

[3]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equation,, Mem. Amer. Math. Soc., 204 (2010).   Google Scholar

[4]

O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenizations for second-order Hamilton-Jacobi equations,, J. Differential Equations, 243 (2007), 349.  doi: 10.1016/j.jde.2007.05.027.  Google Scholar

[5]

O. Alvarez, M. Bardi and C. Marchi, Multiscale singular perturbation and homogenization of optimal control problems,, in, (2008), 1.   Google Scholar

[6]

M. Arisawa and P. L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.   Google Scholar

[7]

G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations,, M2AN Math. Model. Numer. Anal., 36 (2002), 33.  doi: 10.1051/m2an:2002002.  Google Scholar

[8]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Clarendon Press, (1998).   Google Scholar

[9]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,'', North-Holland, (1978).   Google Scholar

[10]

L. A. Caffarelli, P. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media,, Comm. Pure Appl. Math., 58 (2005), 319.  doi: 10.1002/cpa.20069.  Google Scholar

[11]

F. Camilli and C. Marchi, Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs,, Nonlinearity, 22 (2009), 1481.  doi: 10.1088/0951-7715/22/6/011.  Google Scholar

[12]

I. Capuzzo Dolcetta and H. Ishii, On the rate of convergence in Homogenization of Hamilton-Jacobi equations,, Indiana Univ. Math. J., 50 (2001), 1113.  doi: 10.1512/iumj.2001.50.1933.  Google Scholar

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.   Google Scholar

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear P.D.E.,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.   Google Scholar

[15]

L. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.   Google Scholar

[16]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Springer-Verlag, (1993).   Google Scholar

[17]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-players, zero-sum stochastic differential games,, Indiana Univ. Math. J., 38 (1989), 293.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 2nd, edition, (1983).   Google Scholar

[19]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,'', Springer, (1994).   Google Scholar

[20]

N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients,, Probab. Theory Related Fields, 117 (2000), 1.  doi: 10.1007/s004400050264.  Google Scholar

[21]

O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,'', Academic Press, (1968).   Google Scholar

[22]

P. L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations,, Unpublished, (1986).   Google Scholar

[23]

P.L. Lions and P. Souganidis, Homogenization of "viscous'' Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Differential Equations, 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[24]

P. L. Lions and P. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 667.  doi: 10.1016/j.anihpc.2004.10.009.  Google Scholar

[25]

C. Marchi, Rate of convergence for multiscale homogenization of Hamilton-Jacobi equations,, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 519.  doi: 10.1017/S0308210507000704.  Google Scholar

[26]

M. V. Safonov, Classical solution of nonlinear elliptic equations of second-order,, Math. USSR-Izv., 33 (1989), 597.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]