-
Previous Article
A model for biological dynamic networks
- NHM Home
- This Issue
-
Next Article
Multiscale model of tumor-derived capillary-like network formation
Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model
1. | Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419 |
2. | Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States |
References:
[1] |
M. Anliker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Part I: Derivation and properties of mathematical model,, Z. Angew. Math. Phys., 22 (1971), 217.
doi: 10.1007/BF01591407. |
[2] |
A. C. L. Barnard, W. A. Hunt, W. P. Timlake and E. Varley, A theory of fluid flow in compliant tubes,, Biophysical J., 6 (1966), 717.
doi: 10.1016/S0006-3495(66)86690-0. |
[3] |
S. Čanić, Blood flow through compliant vessels after endovascular repair: Wall deformations induced by the discontinuous wall properties,, Computing and Visualization in Science, 4 (2002), 147.
doi: 10.1007/s007910100066. |
[4] |
S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161.
|
[5] |
S. Čanić, D. Lamponi, A. Mikelić and J. Tambača, Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries,, Multiscale Model. Simul., 3 (2005), 559.
|
[6] |
S. Čanić and D. Mirković, A hyperbolic system of conservation laws in modeling endovascular treatment of abdominal aortic aneurysm,, in, 140 (2001), 227.
|
[7] |
G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Rat. Mech. Anal., 147 (1999), 89.
doi: 10.1007/s002050050146. |
[8] |
G.-Q. Chen and H. Frid, Vanishing viscosity limit for initial-boundary value problems for conservation laws,, in, 238 (1999), 35.
|
[9] |
K. N. Chueh, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373.
doi: 10.1512/iumj.1977.26.26029. |
[10] |
X. X. Ding, G. Q. Chen and P. Z. Luo, Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics,, Comm. Math. Phys., 121 (1989), 63.
doi: 10.1007/BF01218624. |
[11] |
R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics,, Comm. Math. Phys., 91 (1983), 1.
doi: 10.1007/BF01206047. |
[12] |
L. Formaggia, F. Nobile and A. Quarteroni, A one-dimensional model for blood flow: Application to vascular prosthesis,, in, 19 (2002).
|
[13] |
L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: A preliminary analysis,, Computing and Visualization in Science, 2 (1999), 75.
doi: 10.1007/s007910050030. |
[14] |
A. Heidrich, Global weak solutions to initial-boundary-value problems for the one-dimensional quasilinear wave equation with large data,, Arch. Rat. Mech. Anal., 126 (1994), 333.
doi: 10.1007/BF00380896. |
[15] |
L. Hsiao and K. J. Zhang, The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 10 (2000), 1333.
doi: 10.1142/S0218202500000653. |
[16] |
F. M. Huang, P. Marcati and R. H. Pan, Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 176 (2005), 1.
doi: 10.1007/s00205-004-0349-y. |
[17] |
F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 166 (2003), 359.
doi: 10.1007/s00205-002-0234-5. |
[18] |
T. Li and S. Čanić, Critical thresholds in a quasilinear hyperbolic model of blood flow,, Netw. Heterog. Media, 4 (2009), 527.
doi: 10.3934/nhm.2009.4.527. |
[19] |
T. Li and K. Zhao, On a quasilinear hyperbolic system in blood flow modeling,, Discrete & Continuous Dynamical Systems-B, 16 (2011), 333. Google Scholar |
[20] |
P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599.
doi: 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5. |
[21] |
P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems,, Comm. Math. Phys., 163 (1994), 415.
doi: 10.1007/BF02102014. |
[22] |
T.-P. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math, 13 (1996), 25.
doi: 10.1007/BF03167296. |
[23] |
T.-P. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223.
doi: 10.1006/jdeq.1997.3281. |
[24] |
T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity. Cathleen Morawetz: A great mathematician,, Methods Appl. Anal., 7 (2000), 495.
|
[25] |
P. Marcati and B. Rubino, Hyperbolic to parabolic relaxation theory for quasilinear first order systems,, J. Differential Equations, 162 (2000), 359.
|
[26] |
F. Murat, Compacité par compensation,, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489.
|
[27] |
M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281.
doi: 10.1114/1.1326031. |
[28] |
R. H. Pan and K. Zhao, Initial boundary value problem for compressible Euler equations with damping,, Indiana University Mathematics Journal, 57 (2008), 2257.
doi: 10.1512/iumj.2008.57.3366. |
[29] |
A. J. Pullan, N. P. Smith and P. J. Hunter, An anatomically based model of transient coronary blood flow in the heart,, SIAM J. Appl. Math., 62 (): 990.
doi: 10.1137/S0036139999355199. |
[30] |
Y. C. Qiu and K. J. Zhang, On the relaxation limits of the hydrodynamic model for semiconductor devices,, Math. Models and Methods in Appl. Sciences, 12 (2002), 333.
doi: 10.1142/S0218202502001684. |
[31] |
J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory,'', Oxford Mathematical Monographs, (2007).
|
show all references
References:
[1] |
M. Anliker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Part I: Derivation and properties of mathematical model,, Z. Angew. Math. Phys., 22 (1971), 217.
doi: 10.1007/BF01591407. |
[2] |
A. C. L. Barnard, W. A. Hunt, W. P. Timlake and E. Varley, A theory of fluid flow in compliant tubes,, Biophysical J., 6 (1966), 717.
doi: 10.1016/S0006-3495(66)86690-0. |
[3] |
S. Čanić, Blood flow through compliant vessels after endovascular repair: Wall deformations induced by the discontinuous wall properties,, Computing and Visualization in Science, 4 (2002), 147.
doi: 10.1007/s007910100066. |
[4] |
S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161.
|
[5] |
S. Čanić, D. Lamponi, A. Mikelić and J. Tambača, Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries,, Multiscale Model. Simul., 3 (2005), 559.
|
[6] |
S. Čanić and D. Mirković, A hyperbolic system of conservation laws in modeling endovascular treatment of abdominal aortic aneurysm,, in, 140 (2001), 227.
|
[7] |
G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Rat. Mech. Anal., 147 (1999), 89.
doi: 10.1007/s002050050146. |
[8] |
G.-Q. Chen and H. Frid, Vanishing viscosity limit for initial-boundary value problems for conservation laws,, in, 238 (1999), 35.
|
[9] |
K. N. Chueh, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373.
doi: 10.1512/iumj.1977.26.26029. |
[10] |
X. X. Ding, G. Q. Chen and P. Z. Luo, Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics,, Comm. Math. Phys., 121 (1989), 63.
doi: 10.1007/BF01218624. |
[11] |
R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics,, Comm. Math. Phys., 91 (1983), 1.
doi: 10.1007/BF01206047. |
[12] |
L. Formaggia, F. Nobile and A. Quarteroni, A one-dimensional model for blood flow: Application to vascular prosthesis,, in, 19 (2002).
|
[13] |
L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: A preliminary analysis,, Computing and Visualization in Science, 2 (1999), 75.
doi: 10.1007/s007910050030. |
[14] |
A. Heidrich, Global weak solutions to initial-boundary-value problems for the one-dimensional quasilinear wave equation with large data,, Arch. Rat. Mech. Anal., 126 (1994), 333.
doi: 10.1007/BF00380896. |
[15] |
L. Hsiao and K. J. Zhang, The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 10 (2000), 1333.
doi: 10.1142/S0218202500000653. |
[16] |
F. M. Huang, P. Marcati and R. H. Pan, Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 176 (2005), 1.
doi: 10.1007/s00205-004-0349-y. |
[17] |
F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 166 (2003), 359.
doi: 10.1007/s00205-002-0234-5. |
[18] |
T. Li and S. Čanić, Critical thresholds in a quasilinear hyperbolic model of blood flow,, Netw. Heterog. Media, 4 (2009), 527.
doi: 10.3934/nhm.2009.4.527. |
[19] |
T. Li and K. Zhao, On a quasilinear hyperbolic system in blood flow modeling,, Discrete & Continuous Dynamical Systems-B, 16 (2011), 333. Google Scholar |
[20] |
P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599.
doi: 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5. |
[21] |
P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems,, Comm. Math. Phys., 163 (1994), 415.
doi: 10.1007/BF02102014. |
[22] |
T.-P. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math, 13 (1996), 25.
doi: 10.1007/BF03167296. |
[23] |
T.-P. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223.
doi: 10.1006/jdeq.1997.3281. |
[24] |
T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity. Cathleen Morawetz: A great mathematician,, Methods Appl. Anal., 7 (2000), 495.
|
[25] |
P. Marcati and B. Rubino, Hyperbolic to parabolic relaxation theory for quasilinear first order systems,, J. Differential Equations, 162 (2000), 359.
|
[26] |
F. Murat, Compacité par compensation,, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489.
|
[27] |
M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281.
doi: 10.1114/1.1326031. |
[28] |
R. H. Pan and K. Zhao, Initial boundary value problem for compressible Euler equations with damping,, Indiana University Mathematics Journal, 57 (2008), 2257.
doi: 10.1512/iumj.2008.57.3366. |
[29] |
A. J. Pullan, N. P. Smith and P. J. Hunter, An anatomically based model of transient coronary blood flow in the heart,, SIAM J. Appl. Math., 62 (): 990.
doi: 10.1137/S0036139999355199. |
[30] |
Y. C. Qiu and K. J. Zhang, On the relaxation limits of the hydrodynamic model for semiconductor devices,, Math. Models and Methods in Appl. Sciences, 12 (2002), 333.
doi: 10.1142/S0218202502001684. |
[31] |
J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory,'', Oxford Mathematical Monographs, (2007).
|
[1] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[2] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[3] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[4] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[5] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[6] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[7] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[8] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[9] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[10] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[11] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[12] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[13] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[14] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[15] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[16] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[17] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[18] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[19] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[20] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]