December  2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647

A model for biological dynamic networks

1. 

Department of Mathematical Sciences, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

2. 

Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

Received  March 2011 Revised  September 2011 Published  December 2011

The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.
Citation: Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647
References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks,, Am. J. Phys., 71 (2003), 409.  doi: 10.1119/1.1538577.  Google Scholar

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs,, in, (2003), 132.   Google Scholar

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type,, Europ. J. of Control, 8 (2002), 343.  doi: 10.3166/ejc.8.343-359.  Google Scholar

[6]

C. Cooper and A. Frieze, A general model of web graphs,, Random Struct. Alg., 22 (2003), 311.  doi: 10.1002/rsa.10084.  Google Scholar

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications,", Third edition, (1995).   Google Scholar

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation,, Mol. Syst. Biology, 4 (2008).  doi: 10.1038/msb4100204.  Google Scholar

[9]

R. Durrett, "Random Graph Dynamics,", Cambridge Series in Statistical and Probabilistic Mathematics, (2007).   Google Scholar

[10]

P. Erdős and A. Renyi, On random graphs,, Publ. Math. Debrecen, 6 (1959), 290.   Google Scholar

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks,, in, (2006), 13.   Google Scholar

[12]

E. M. Hagos, Some results on graph spectra,, Linear Algebra Appl., 356 (2002), 103.  doi: 10.1016/S0024-3795(02)00324-5.  Google Scholar

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif,, PNAS, 100 (2003), 11980.  doi: 10.1073/pnas.2133841100.  Google Scholar

[14]

M. E. J. Newman, The structure and functions of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511790515.  Google Scholar

[16]

E. D. Sontag, Molecular systems biology and control,, Europ. J. of Control, 11 (2005), 396.   Google Scholar

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

show all references

References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks,, Am. J. Phys., 71 (2003), 409.  doi: 10.1119/1.1538577.  Google Scholar

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs,, in, (2003), 132.   Google Scholar

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type,, Europ. J. of Control, 8 (2002), 343.  doi: 10.3166/ejc.8.343-359.  Google Scholar

[6]

C. Cooper and A. Frieze, A general model of web graphs,, Random Struct. Alg., 22 (2003), 311.  doi: 10.1002/rsa.10084.  Google Scholar

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications,", Third edition, (1995).   Google Scholar

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation,, Mol. Syst. Biology, 4 (2008).  doi: 10.1038/msb4100204.  Google Scholar

[9]

R. Durrett, "Random Graph Dynamics,", Cambridge Series in Statistical and Probabilistic Mathematics, (2007).   Google Scholar

[10]

P. Erdős and A. Renyi, On random graphs,, Publ. Math. Debrecen, 6 (1959), 290.   Google Scholar

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks,, in, (2006), 13.   Google Scholar

[12]

E. M. Hagos, Some results on graph spectra,, Linear Algebra Appl., 356 (2002), 103.  doi: 10.1016/S0024-3795(02)00324-5.  Google Scholar

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif,, PNAS, 100 (2003), 11980.  doi: 10.1073/pnas.2133841100.  Google Scholar

[14]

M. E. J. Newman, The structure and functions of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511790515.  Google Scholar

[16]

E. D. Sontag, Molecular systems biology and control,, Europ. J. of Control, 11 (2005), 396.   Google Scholar

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

[1]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[2]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[3]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[4]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[5]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[6]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[7]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[8]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[9]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[10]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[11]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[12]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[13]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[16]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[17]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[18]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[19]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[20]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]