December  2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647

A model for biological dynamic networks

1. 

Department of Mathematical Sciences, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

2. 

Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

Received  March 2011 Revised  September 2011 Published  December 2011

The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.
Citation: Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647
References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks,, Am. J. Phys., 71 (2003), 409.  doi: 10.1119/1.1538577.  Google Scholar

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs,, in, (2003), 132.   Google Scholar

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type,, Europ. J. of Control, 8 (2002), 343.  doi: 10.3166/ejc.8.343-359.  Google Scholar

[6]

C. Cooper and A. Frieze, A general model of web graphs,, Random Struct. Alg., 22 (2003), 311.  doi: 10.1002/rsa.10084.  Google Scholar

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications,", Third edition, (1995).   Google Scholar

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation,, Mol. Syst. Biology, 4 (2008).  doi: 10.1038/msb4100204.  Google Scholar

[9]

R. Durrett, "Random Graph Dynamics,", Cambridge Series in Statistical and Probabilistic Mathematics, (2007).   Google Scholar

[10]

P. Erdős and A. Renyi, On random graphs,, Publ. Math. Debrecen, 6 (1959), 290.   Google Scholar

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks,, in, (2006), 13.   Google Scholar

[12]

E. M. Hagos, Some results on graph spectra,, Linear Algebra Appl., 356 (2002), 103.  doi: 10.1016/S0024-3795(02)00324-5.  Google Scholar

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif,, PNAS, 100 (2003), 11980.  doi: 10.1073/pnas.2133841100.  Google Scholar

[14]

M. E. J. Newman, The structure and functions of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511790515.  Google Scholar

[16]

E. D. Sontag, Molecular systems biology and control,, Europ. J. of Control, 11 (2005), 396.   Google Scholar

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

show all references

References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks,, Am. J. Phys., 71 (2003), 409.  doi: 10.1119/1.1538577.  Google Scholar

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs,, in, (2003), 132.   Google Scholar

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type,, Europ. J. of Control, 8 (2002), 343.  doi: 10.3166/ejc.8.343-359.  Google Scholar

[6]

C. Cooper and A. Frieze, A general model of web graphs,, Random Struct. Alg., 22 (2003), 311.  doi: 10.1002/rsa.10084.  Google Scholar

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications,", Third edition, (1995).   Google Scholar

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation,, Mol. Syst. Biology, 4 (2008).  doi: 10.1038/msb4100204.  Google Scholar

[9]

R. Durrett, "Random Graph Dynamics,", Cambridge Series in Statistical and Probabilistic Mathematics, (2007).   Google Scholar

[10]

P. Erdős and A. Renyi, On random graphs,, Publ. Math. Debrecen, 6 (1959), 290.   Google Scholar

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks,, in, (2006), 13.   Google Scholar

[12]

E. M. Hagos, Some results on graph spectra,, Linear Algebra Appl., 356 (2002), 103.  doi: 10.1016/S0024-3795(02)00324-5.  Google Scholar

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif,, PNAS, 100 (2003), 11980.  doi: 10.1073/pnas.2133841100.  Google Scholar

[14]

M. E. J. Newman, The structure and functions of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511790515.  Google Scholar

[16]

E. D. Sontag, Molecular systems biology and control,, Europ. J. of Control, 11 (2005), 396.   Google Scholar

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

[1]

Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks & Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453

[2]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

[3]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[4]

Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks & Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373

[5]

Christina Knox, Amir Moradifam. Electrical networks with prescribed current and applications to random walks on graphs. Inverse Problems & Imaging, 2019, 13 (2) : 353-375. doi: 10.3934/ipi.2019018

[6]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[7]

Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences & Engineering, 2013, 10 (1) : 103-120. doi: 10.3934/mbe.2013.10.103

[8]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[9]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[10]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[11]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[12]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[13]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[14]

A. Marigo. Robustness of square networks. Networks & Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537

[15]

Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks & Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17

[16]

Yi Ming Zou. Dynamics of boolean networks. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1629-1640. doi: 10.3934/dcdss.2011.4.1629

[17]

Werner Creixell, Juan Carlos Losada, Tomás Arredondo, Patricio Olivares, Rosa María Benito. Serendipity in social networks. Networks & Heterogeneous Media, 2012, 7 (3) : 363-371. doi: 10.3934/nhm.2012.7.363

[18]

Jesse Collingwood, Robert D. Foley, David R. McDonald. Networks with cascading overloads. Journal of Industrial & Management Optimization, 2012, 8 (4) : 877-894. doi: 10.3934/jimo.2012.8.877

[19]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[20]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]