December  2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647

A model for biological dynamic networks

1. 

Department of Mathematical Sciences, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

2. 

Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University - Camden, 311 N 5th Street, Camden, NJ 08102, United States

Received  March 2011 Revised  September 2011 Published  December 2011

The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.
Citation: Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647
References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509.

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks, Am. J. Phys., 71 (2003), 409-410. doi: 10.1119/1.1538577.

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs, in "Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms" (Baltimore, MD, 2003), 132-139, ACM, New York, 2003.

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type, Europ. J. of Control, 8 (2002), 343-359. doi: 10.3166/ejc.8.343-359.

[6]

C. Cooper and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311-335. doi: 10.1002/rsa.10084.

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications," Third edition, Johann Ambrosius Barth, Heidelberg, 1995.

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation, Mol. Syst. Biology, 4 (2008), Article number 161. doi: 10.1038/msb4100204.

[9]

R. Durrett, "Random Graph Dynamics," Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2007.

[10]

P. Erdős and A. Renyi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290-297.

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks, in "Proceedings of the 45th IEEE Conference on Decision & Control," San Diego, CA, USA, December 13-15, (2006), 2104-2109.

[12]

E. M. Hagos, Some results on graph spectra, Linear Algebra Appl., 356 (2002), 103-111. doi: 10.1016/S0024-3795(02)00324-5.

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, PNAS, 100 (2003), 11980-11985. doi: 10.1073/pnas.2133841100.

[14]

M. E. J. Newman, The structure and functions of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480.

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks," Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511790515.

[16]

E. D. Sontag, Molecular systems biology and control, Europ. J. of Control, 11 (2005), 396-435.

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. doi: 10.1038/30918.

show all references

References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[2]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509.

[3]

A.-L. Barabási and R. E. Crandall, Linked: The new science of networks, Am. J. Phys., 71 (2003), 409-410. doi: 10.1119/1.1538577.

[4]

B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs, in "Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms" (Baltimore, MD, 2003), 132-139, ACM, New York, 2003.

[5]

M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type, Europ. J. of Control, 8 (2002), 343-359. doi: 10.3166/ejc.8.343-359.

[6]

C. Cooper and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311-335. doi: 10.1002/rsa.10084.

[7]

D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications," Third edition, Johann Ambrosius Barth, Heidelberg, 1995.

[8]

D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation, Mol. Syst. Biology, 4 (2008), Article number 161. doi: 10.1038/msb4100204.

[9]

R. Durrett, "Random Graph Dynamics," Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2007.

[10]

P. Erdős and A. Renyi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290-297.

[11]

M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks, in "Proceedings of the 45th IEEE Conference on Decision & Control," San Diego, CA, USA, December 13-15, (2006), 2104-2109.

[12]

E. M. Hagos, Some results on graph spectra, Linear Algebra Appl., 356 (2002), 103-111. doi: 10.1016/S0024-3795(02)00324-5.

[13]

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, PNAS, 100 (2003), 11980-11985. doi: 10.1073/pnas.2133841100.

[14]

M. E. J. Newman, The structure and functions of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480.

[15]

B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks," Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511790515.

[16]

E. D. Sontag, Molecular systems biology and control, Europ. J. of Control, 11 (2005), 396-435.

[17]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. doi: 10.1038/30918.

[1]

Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453

[2]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

[3]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[4]

Christina Knox, Amir Moradifam. Electrical networks with prescribed current and applications to random walks on graphs. Inverse Problems and Imaging, 2019, 13 (2) : 353-375. doi: 10.3934/ipi.2019018

[5]

Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373

[6]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[7]

Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences & Engineering, 2013, 10 (1) : 103-120. doi: 10.3934/mbe.2013.10.103

[8]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[9]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial and Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[10]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[11]

Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial and Management Optimization, 2022, 18 (1) : 95-110. doi: 10.3934/jimo.2020144

[12]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks and Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[13]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[14]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[15]

A. Marigo. Robustness of square networks. Networks and Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537

[16]

Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks and Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17

[17]

Yi Ming Zou. Dynamics of boolean networks. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1629-1640. doi: 10.3934/dcdss.2011.4.1629

[18]

Werner Creixell, Juan Carlos Losada, Tomás Arredondo, Patricio Olivares, Rosa María Benito. Serendipity in social networks. Networks and Heterogeneous Media, 2012, 7 (3) : 363-371. doi: 10.3934/nhm.2012.7.363

[19]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[20]

Jesse Collingwood, Robert D. Foley, David R. McDonald. Networks with cascading overloads. Journal of Industrial and Management Optimization, 2012, 8 (4) : 877-894. doi: 10.3934/jimo.2012.8.877

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]