December  2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681

Shock formation in a traffic flow model with Arrhenius look-ahead dynamics

1. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States

2. 

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419

Received  January 2011 Revised  October 2011 Published  December 2011

We consider a nonlocal traffic flow model with Arrhenius look-ahead dynamics. We provide a complete local theory and give the blowup alternative of solutions to the conservation law with a nonlocal flux. We show that the finite time blowup of solutions must occur at the level of the first order derivative of the solution. Furthermore, we prove that finite time singularities do occur for several types of physical initial data by analyzing the solutions on different characteristic lines. These results are new and are consistent with the blowups observed in previous numerical simulations on the nonlocal traffic flow model [6].
Citation: Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681
References:
[1]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035.

[2]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[3]

W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5.

[4]

B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54.

[5]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181.

[6]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431.

[7]

H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118-1-016118-7.

[8]

T. Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011.

[9]

T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638.

[10]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002.

[11]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser. A, 229 (1955), 317-345.

[12]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203.

[13]

K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672. doi: 10.1103/PhysRevE.53.4655.

[14]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.

[15]

P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[16]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 6 (2006), 921-944. doi: 10.1137/040617790.

[17]

G. B. Whitham, "Linear and Nonlinear Waves," Wiley, New York, 1974.

show all references

References:
[1]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035.

[2]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[3]

W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5.

[4]

B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54.

[5]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181.

[6]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431.

[7]

H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118-1-016118-7.

[8]

T. Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011.

[9]

T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638.

[10]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002.

[11]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser. A, 229 (1955), 317-345.

[12]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203.

[13]

K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672. doi: 10.1103/PhysRevE.53.4655.

[14]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.

[15]

P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[16]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 6 (2006), 921-944. doi: 10.1137/040617790.

[17]

G. B. Whitham, "Linear and Nonlinear Waves," Wiley, New York, 1974.

[1]

Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 323-339. doi: 10.3934/dcds.2015.35.323

[2]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[3]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[4]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[5]

Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275

[6]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[7]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[8]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[9]

Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada. Nonlocal reaction traffic flow model with on-off ramps. Networks and Heterogeneous Media, 2022, 17 (2) : 203-226. doi: 10.3934/nhm.2022003

[10]

James K. Knowles. On shock waves in solids. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 573-580. doi: 10.3934/dcdsb.2007.7.573

[11]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[12]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[13]

Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations and Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009

[14]

Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks and Heterogeneous Media, 2016, 11 (2) : 239-250. doi: 10.3934/nhm.2016.11.239

[15]

Markus Kunze. A second look at the Kurth solution in galactic dynamics. Kinetic and Related Models, 2022, 15 (4) : 651-662. doi: 10.3934/krm.2021028

[16]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[17]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487

[20]

Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]