Citation: |
[1] |
M. A. Berezhnyy and L. V. Berlyand, Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality, Journal of the Mechanics and Physics of Solids, 54 (2006), 635-669.doi: 10.1016/j.jmps.2005.09.006. |
[2] |
M. A. Berezhnyi, The asymptotic bahavior of viscous incompressible fluid small oscillations with solid interacting particles, Journal of Mathematical Physics, Analysis, Geometry, 3 (2007), 135-156. |
[3] |
M. Berezhnyi, L. Berlyand and E. Khruslov, The homogenized model of small oscillations of complex fluids, Networks and Heterogeneous Media, 3 (2008), 835-869. |
[4] |
M. Berezhnyi, "Homogenized Models of Complex Fluids," PhD Thesis, ILTPE, 2009 (in ukrainian), 159 p. URL: http://www.dlib.com.ua/useredneni-modeli-strukturovanykh-ridyn.html. |
[5] |
L. V. Berlyand and A. D. Okhotsimskii, Averaged description of an elastic medium with a large number of small absolutely rigid inclusions, Dokl. Akad. Nauk SSSR, 268 (1983), 317-320 (in Russian). |
[6] |
L. Berlyand and E. Khruslov, Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid, SIAM, Journal of Applied Mathematics, 64 (2004), 1002-1034.doi: i:10.1137/S0036139902403913. |
[7] |
E. Cosserat et F. Cosserat, "Théorie des Corps Deformables," Hermann, Paris, 1909. |
[8] |
V. A. Ditkin and A. P. Prudnikov, "Integral Transforms and Operational Calculus," Oxford; New York: Pergamon, 1965, 529p. |
[9] |
G. Grioli, Ellasticá asymmetrica, Annali di matematica pura ed applicata, 4 (1960), 389-418.doi: 10.1007/BF02414525. |
[10] |
T. Kato, "Perturbation Theory for Linear Operators," Springer, 1995, 652 p. |
[11] |
L. D. Landau and E. M. Lifshitz, "Course of Theoretical Physics. Quantum Mechanics. Non-relativistic Theory," London: Pergamon, 1958, 515 p. |
[12] |
A. I. Leonov, Algebraic theory of linear viscoelastic nematodynamics, Mathematical Physics, Analysis and Geometry, 11 (2008), 87-116.doi: 10.1007/s11040-008-9041-z. |
[13] |
V. Marchenko and E. Khruslov, "Homogenization of Partial Differential Equations," Birkhäuser, Boston, 2006, 401 p. |
[14] |
A. I. Marcushevich, "Theory of Analytic Functions: Brief Course," Mir, Moscow, 1983. |
[15] |
R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11 (1962), 415-448.doi: 10.1007/BF00253946. |
[16] |
O. A. Oleinic, A. S. Shamaev and G. A. Iosif'yan, "Mathematical Problems in Elasticity and Homogenization," in "Studies in Mathematics and its Applications," 26, North-Holland Publishing Co., Amsterdam, 1992, 398 p. |
[17] |
I. Y. Smolin, P. V. Makarov, D. V. Shmick and I. V. Savlevich, A micropolar model of plastic deformation of polycrystals at the mesolevel, Computational Materials Science, 19 (2000), 133-142.doi: 10.1016/S0927-0256(00)00148-8. |
[18] |
X. Zhang and P. Sharma, Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems, International Journal of Solids and Structures, 42 (2005), 3833-3851.doi: 10.1016/j.ijsolstr.2004.12.005. |