March  2012, 7(1): 113-126. doi: 10.3934/nhm.2012.7.113

Robustness of finite element simulations in densely packed random particle composites

1. 

Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany

Received  July 2011 Revised  October 2011 Published  February 2012

This paper presents some weighted $H^2$-regularity estimates for a model Poisson problem with discontinuous coefficient at high contrast. The coefficient represents a random particle reinforced composite material, i.e., perfectly conducting circular particles are randomly distributed in some background material with low conductivity. Based on these regularity results we study the percolation of thermal conductivity of the material as the volume fraction of the particles is close to the jammed state. We prove that the characteristic percolation behavior of the material is well captured by standard conforming finite element models.
Citation: Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks & Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113
References:
[1]

I. Babuška and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. II: The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions,, SIAM J. Math. Anal., 20 (1989), 763.  doi: 10.1137/0520054.  Google Scholar

[2]

L. Berlyand and A. Kolpakov, Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite,, Arch. Ration. Mech. Anal., 159 (2001), 179.  doi: 10.1007/s002050100142.  Google Scholar

[3]

L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry,, SIAM J. Math. Anal., 34 (2002), 385.  doi: 10.1137/S0036141001397144.  Google Scholar

[4]

L. Borcea and G. C. Papanicolaou, Network approximation for transport properties of high contrast materials,, SIAM J. Appl. Math., 58 (1998), 501.  doi: 10.1137/S0036139996301891.  Google Scholar

[5]

G. A. Chechkin, Yu. O. Koroleva and L.-E. Persson, On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure,, J. Inequal. Appl., 2007 (3413).   Google Scholar

[6]

L. C. Evans, "Partial Differential Equations,'' 2nd edition,, Graduate Studies in Mathematics, 19 (2010).   Google Scholar

[7]

J. M. Melenk, "$hp$-Finite Element Methods for Singular Perturbations,'', Lecture Notes in Mathematics, 1796 (2002).   Google Scholar

[8]

D. Peterseim, Generalized delaunay partitions and composite material modeling, preprint,, DFG Research Center Matheon Berlin, 690 (2010).   Google Scholar

[9]

D. Peterseim, Triangulating a system of disks,, in, (2010), 241.   Google Scholar

[10]

D. Peterseim and C. Carstensen, Finite element network approximation of conductivity in particle composites,, preprint, 807 (2010).   Google Scholar

show all references

References:
[1]

I. Babuška and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. II: The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions,, SIAM J. Math. Anal., 20 (1989), 763.  doi: 10.1137/0520054.  Google Scholar

[2]

L. Berlyand and A. Kolpakov, Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite,, Arch. Ration. Mech. Anal., 159 (2001), 179.  doi: 10.1007/s002050100142.  Google Scholar

[3]

L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry,, SIAM J. Math. Anal., 34 (2002), 385.  doi: 10.1137/S0036141001397144.  Google Scholar

[4]

L. Borcea and G. C. Papanicolaou, Network approximation for transport properties of high contrast materials,, SIAM J. Appl. Math., 58 (1998), 501.  doi: 10.1137/S0036139996301891.  Google Scholar

[5]

G. A. Chechkin, Yu. O. Koroleva and L.-E. Persson, On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure,, J. Inequal. Appl., 2007 (3413).   Google Scholar

[6]

L. C. Evans, "Partial Differential Equations,'' 2nd edition,, Graduate Studies in Mathematics, 19 (2010).   Google Scholar

[7]

J. M. Melenk, "$hp$-Finite Element Methods for Singular Perturbations,'', Lecture Notes in Mathematics, 1796 (2002).   Google Scholar

[8]

D. Peterseim, Generalized delaunay partitions and composite material modeling, preprint,, DFG Research Center Matheon Berlin, 690 (2010).   Google Scholar

[9]

D. Peterseim, Triangulating a system of disks,, in, (2010), 241.   Google Scholar

[10]

D. Peterseim and C. Carstensen, Finite element network approximation of conductivity in particle composites,, preprint, 807 (2010).   Google Scholar

[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[8]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[9]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[10]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[16]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[17]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[20]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]