• Previous Article
    Robustness of finite element simulations in densely packed random particle composites
  • NHM Home
  • This Issue
  • Next Article
    Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients
March  2012, 7(1): 127-136. doi: 10.3934/nhm.2012.7.127

Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length

1. 

Politecnico di Torino, Dipartimento di Scienze Matematiche, Corso Duca degli Abruzzi, 24 10129 Torino, Italy

Received  July 2011 Published  February 2012

In this paper we prove some lower bounds for the compliance functional, in terms of the $1$-dimensional Hausdorff measure of the Dirichlet region and the number of its connected components. When the measure of the Dirichlet region is large, these estimates are asymptotically optimal and yield a proof of a conjecture by Buttazzo and Santambrogio.
Citation: Paolo Tilli. Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length. Networks & Heterogeneous Media, 2012, 7 (1) : 127-136. doi: 10.3934/nhm.2012.7.127
References:
[1]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[2]

L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[3]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Convex Anal., 12 (2005), 145. Google Scholar

[4]

P. Tilli, Some explicit examples of minimizers for the irrigation problem,, J. Convex Anal., 17 (2010), 583. Google Scholar

[5]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Graduate Texts in Mathematics, 120 (1989). Google Scholar

show all references

References:
[1]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[2]

L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[3]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Convex Anal., 12 (2005), 145. Google Scholar

[4]

P. Tilli, Some explicit examples of minimizers for the irrigation problem,, J. Convex Anal., 17 (2010), 583. Google Scholar

[5]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Graduate Texts in Mathematics, 120 (1989). Google Scholar

[1]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[2]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[3]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[4]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[5]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[6]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[7]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[8]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[9]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[10]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[11]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[12]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[13]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[14]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[15]

Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056

[16]

Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks & Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761

[17]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[18]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[19]

Yannis Petrohilos-Andrianos, Anastasios Xepapadeas. On the evolution of compliance and regulation with tax evading agents. Journal of Dynamics & Games, 2016, 3 (3) : 231-260. doi: 10.3934/jdg.2016013

[20]

Al-hassem Nayam. Asymptotics of an optimal compliance-network problem. Networks & Heterogeneous Media, 2013, 8 (2) : 573-589. doi: 10.3934/nhm.2013.8.573

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]