March  2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137

Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients

1. 

Mathematical Sciences, Durham University, Science Site, South Road, Durham DH1 3LE, United Kingdom

2. 

Fakultät II, Institut für Mathematik, Sekr. MA 7–5, Technische Universität Berlin, Strasse des 17. Juni 136, D-10623 Berlin, Germany

Received  March 2011 Revised  September 2011 Published  February 2012

We consider a model for the propagation of a driven interface through a random field of obstacles. The evolution equation, commonly referred to as the Quenched Edwards-Wilkinson model, is a semilinear parabolic equation with a constant driving term and random nonlinearity to model the influence of the obstacle field. For the case of isolated obstacles centered on lattice points and admitting a random strength with exponential tails, we show that the interface propagates with a finite velocity for sufficiently large driving force. The proof consists of a discretization of the evolution equation and a supermartingale estimate akin to the study of branching random walks.
Citation: Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137
References:
[1]

S. Brazovskii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves,, Adv. Phys., 53 (2004), 177.   Google Scholar

[2]

J. Coville, N. Dirr and S. Luckhaus, Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients,, Networks and Heterogeneous Media, 5 (2010), 745.   Google Scholar

[3]

N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd and M. Scheutzow, Lipschitz percolation,, Electron. Commun. Probab., 15 (2010), 14.   Google Scholar

[4]

N. Dirr, P. W. Dondl and M. Scheutzow, Pinning of interfaces in random media,, Interfaces and Free Boundaries, 13 (2011), 411.   Google Scholar

[5]

M. Kardar, Nonequilibrium dynamics of interfaces and lines,, Phys. Rep., 301 (1998), 85.  doi: 10.1016/S0370-1573(98)00007-6.  Google Scholar

[6]

L. Nirenberg, A strong maximum principle for parabolic equations,, Comm. Pure Appl. Math., 6 (1953), 167.   Google Scholar

[7]

D. Siegmund, On moments of the maximum of normed partial sums,, Ann. Math. Statist., 40 (1969), 527.  doi: 10.1214/aoms/1177697720.  Google Scholar

show all references

References:
[1]

S. Brazovskii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves,, Adv. Phys., 53 (2004), 177.   Google Scholar

[2]

J. Coville, N. Dirr and S. Luckhaus, Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients,, Networks and Heterogeneous Media, 5 (2010), 745.   Google Scholar

[3]

N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd and M. Scheutzow, Lipschitz percolation,, Electron. Commun. Probab., 15 (2010), 14.   Google Scholar

[4]

N. Dirr, P. W. Dondl and M. Scheutzow, Pinning of interfaces in random media,, Interfaces and Free Boundaries, 13 (2011), 411.   Google Scholar

[5]

M. Kardar, Nonequilibrium dynamics of interfaces and lines,, Phys. Rep., 301 (1998), 85.  doi: 10.1016/S0370-1573(98)00007-6.  Google Scholar

[6]

L. Nirenberg, A strong maximum principle for parabolic equations,, Comm. Pure Appl. Math., 6 (1953), 167.   Google Scholar

[7]

D. Siegmund, On moments of the maximum of normed partial sums,, Ann. Math. Statist., 40 (1969), 527.  doi: 10.1214/aoms/1177697720.  Google Scholar

[1]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[2]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[3]

Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

[4]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[5]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[6]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[7]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[8]

Mario Ohlberger, Ben Schweizer. Modelling of interfaces in unsaturated porous media. Conference Publications, 2007, 2007 (Special) : 794-803. doi: 10.3934/proc.2007.2007.794

[9]

Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202

[10]

Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193

[11]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[12]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[13]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[14]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[15]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

[16]

Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351

[17]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[18]

Humberto Ramos Quoirin, Kenichiro Umezu. A loop type component in the non-negative solutions set of an indefinite elliptic problem. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1255-1269. doi: 10.3934/cpaa.2018060

[19]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[20]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]