June  2012, 7(2): 219-241. doi: 10.3934/nhm.2012.7.219

From discrete to continuous Wardrop equilibria

1. 

Laboratoire Marin Mersenne, Université Paris I, 90 rue de Tolbiac, 75013, Paris, France

2. 

CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16

Received  November 2011 Revised  March 2012 Published  June 2012

The notion of Wardrop equilibrium in congested networks has been very popular in congested traffic modelling since its introduction in the early 50's, it is also well-known that Wardrop equilibria may be obtained by some convex minimization problem. In this paper, in the framework of $\Gamma$-convergence theory, we analyze what happens when a cartesian network becomes very dense. The continuous model we obtain this way is very similar to the continuous model of optimal transport with congestion of Carlier, Jimenez and Santambrogio [6] except that it keeps track of the anisotropy of the network.
Citation: Jean-Bernard Baillon, Guillaume Carlier. From discrete to continuous Wardrop equilibria. Networks & Heterogeneous Media, 2012, 7 (2) : 219-241. doi: 10.3934/nhm.2012.7.219
References:
[1]

J.-B. Baillon and R. Cominetti, Markovian traffic equilibrium,, Math. Prog., 111 (2008), 33. doi: 10.1007/s10107-006-0076-2. Google Scholar

[2]

M. Beckmann, C. McGuire and C. Winsten, "Studies in Economics of Transportation,", Yale University Press, (1956). Google Scholar

[3]

F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Numerical approximation of continuous traffic congestion equilibria,, Netw. Heterog. Media, 4 (2009), 605. Google Scholar

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications, 22 (2002). Google Scholar

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 652. Google Scholar

[6]

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria,, SIAM J. Control Optim., 47 (2008), 1330. doi: 10.1137/060672832. Google Scholar

[7]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). Google Scholar

[8]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003). Google Scholar

[9]

J. G. Wardrop, Some theoretical aspects of road traffic research,, Proc. Inst. Civ. Eng., 2 (1952), 325. Google Scholar

show all references

References:
[1]

J.-B. Baillon and R. Cominetti, Markovian traffic equilibrium,, Math. Prog., 111 (2008), 33. doi: 10.1007/s10107-006-0076-2. Google Scholar

[2]

M. Beckmann, C. McGuire and C. Winsten, "Studies in Economics of Transportation,", Yale University Press, (1956). Google Scholar

[3]

F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Numerical approximation of continuous traffic congestion equilibria,, Netw. Heterog. Media, 4 (2009), 605. Google Scholar

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications, 22 (2002). Google Scholar

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 652. Google Scholar

[6]

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria,, SIAM J. Control Optim., 47 (2008), 1330. doi: 10.1137/060672832. Google Scholar

[7]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). Google Scholar

[8]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003). Google Scholar

[9]

J. G. Wardrop, Some theoretical aspects of road traffic research,, Proc. Inst. Civ. Eng., 2 (1952), 325. Google Scholar

[1]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks & Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[2]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[3]

Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183

[4]

Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

[5]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[6]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[7]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[8]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[9]

Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423

[10]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[11]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[12]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[13]

Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547

[14]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[15]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks & Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

[16]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[17]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[18]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[19]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[20]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]