June  2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243

Explicit solutions of some linear-quadratic mean field games

1. 

Dipartimento di Matematica, Università di Padova, via Trieste, 63; I-35121 Padova, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

We consider $N$-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number $N$ of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [22]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
Citation: Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

O. Alvarez and M. Bardi, Ergodic problems in differential games, in, Advances in Dynamic Game Theory, 9 (2007), 131.   Google Scholar

[4]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations,, Mem. Amer. Math. Soc., 204 (2010).   Google Scholar

[5]

R. J. Aumann, Markets with a continuum of traders,, Econometrica, 32 (1964), 39.  doi: 10.2307/1913732.  Google Scholar

[6]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).   Google Scholar

[7]

T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory,", Second edition, (1995).   Google Scholar

[8]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications,", Applied Mathematical Sciences, 151 (2002).   Google Scholar

[9]

P. Cardaliaguet, "Notes on Mean Field Games,", from P.-L. Lions' lectures at Collège de France, (2010).   Google Scholar

[10]

J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games,", Wiley, (2005).   Google Scholar

[11]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", 2nd edition, 25 (2006).   Google Scholar

[12]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[13]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).   Google Scholar

[14]

O. Guéant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.   Google Scholar

[15]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[16]

R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).   Google Scholar

[17]

M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions,, in, (2003), 98.   Google Scholar

[18]

M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.   Google Scholar

[19]

M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[20]

M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games,, J. Syst. Sci. Complex., 20 (2007), 162.  doi: 10.1007/s11424-007-9015-4.  Google Scholar

[21]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[22]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[23]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[24]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

O. Alvarez and M. Bardi, Ergodic problems in differential games, in, Advances in Dynamic Game Theory, 9 (2007), 131.   Google Scholar

[4]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations,, Mem. Amer. Math. Soc., 204 (2010).   Google Scholar

[5]

R. J. Aumann, Markets with a continuum of traders,, Econometrica, 32 (1964), 39.  doi: 10.2307/1913732.  Google Scholar

[6]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).   Google Scholar

[7]

T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory,", Second edition, (1995).   Google Scholar

[8]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications,", Applied Mathematical Sciences, 151 (2002).   Google Scholar

[9]

P. Cardaliaguet, "Notes on Mean Field Games,", from P.-L. Lions' lectures at Collège de France, (2010).   Google Scholar

[10]

J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games,", Wiley, (2005).   Google Scholar

[11]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", 2nd edition, 25 (2006).   Google Scholar

[12]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[13]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).   Google Scholar

[14]

O. Guéant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.   Google Scholar

[15]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[16]

R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).   Google Scholar

[17]

M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions,, in, (2003), 98.   Google Scholar

[18]

M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.   Google Scholar

[19]

M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[20]

M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games,, J. Syst. Sci. Complex., 20 (2007), 162.  doi: 10.1007/s11424-007-9015-4.  Google Scholar

[21]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[22]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[23]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[24]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[1]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[2]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[10]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[13]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[14]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[18]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (38)

Other articles
by authors

[Back to Top]