June  2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263

A semi-discrete approximation for a first order mean field game problem

1. 

"Sapienza", Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, 00161 Roma

2. 

"Sapienza", Università di Roma, Dipartimento di Matematica Guido Castelnuovo, 00185 Rome, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution $(v,m)$ can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to $(v,m)$ when the discretization parameter tends to zero.
Citation: Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. of Control & Optimization, 50 (2012), 77-109. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477.

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis," Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, MA, 1990.

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems," Springer Series in Operations Research, Springer-Verlag, New York, 2000.

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004.

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France," Lecture Notes given at Tor Vergata, 2010.

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Appl. Math. Optim., 10 (1983), 367-377. doi: 10.1007/BF01448394.

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation, Analyse Non Linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 161-183.

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161-181. doi: 10.1007/BF01442176.

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, (). 

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem, Discrete Contin. Dyn. Syst., 13 (2005), 103-116. doi: 10.3934/dcds.2005.13.103.

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach, arXiv:1106.3269v1, 2011.

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588. doi: 10.1142/S0218202510004349.

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019.

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.019.

[18]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., (). 

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. of Control & Optimization, 50 (2012), 77-109. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477.

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis," Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, MA, 1990.

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems," Springer Series in Operations Research, Springer-Verlag, New York, 2000.

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004.

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France," Lecture Notes given at Tor Vergata, 2010.

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Appl. Math. Optim., 10 (1983), 367-377. doi: 10.1007/BF01448394.

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation, Analyse Non Linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 161-183.

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161-181. doi: 10.1007/BF01442176.

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, (). 

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem, Discrete Contin. Dyn. Syst., 13 (2005), 103-116. doi: 10.3934/dcds.2005.13.103.

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach, arXiv:1106.3269v1, 2011.

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588. doi: 10.1142/S0218202510004349.

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019.

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.019.

[18]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., (). 

[1]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[2]

Lucio Boccardo, Luigi Orsina. The duality method for mean field games systems. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1343-1360. doi: 10.3934/cpaa.2022021

[3]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control and Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[4]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics and Games, 2021, 8 (4) : 467-486. doi: 10.3934/jdg.2021014

[5]

Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4869-4903. doi: 10.3934/dcdsb.2020131

[6]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations and Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[7]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[8]

Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009

[9]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[10]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[11]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[12]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[13]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[14]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[15]

Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025

[16]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006

[17]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Xun Li, Jingrui Sun, Jiongmin Yong. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2-. doi: 10.1186/s41546-016-0002-3

[20]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]