-
Previous Article
A-priori estimates for stationary mean-field games
- NHM Home
- This Issue
-
Next Article
A semi-discrete approximation for a first order mean field game problem
Long time average of mean field games
1. | Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France, France |
2. | 56 Rue d'Assas, 75006 Paris, France |
3. | Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientica 1, 00133 Roma, Italy |
References:
[1] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.
doi: 10.1137/090758477. |
[2] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.
doi: 10.1137/100790069. |
[3] |
M. Arisawa and P.-L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.
doi: 10.1080/03605309808821413. |
[4] |
G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311.
doi: 10.1137/S0036141000369344. |
[5] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.
doi: 10.1017/S0308210500018631. |
[6] |
D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.
|
[7] |
D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games,, preprint., (). Google Scholar |
[8] |
D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem,, preprint., (). Google Scholar |
[9] |
O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, preprint., (). Google Scholar |
[10] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1967).
|
[11] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.
doi: 10.1016/j.crma.2006.09.019. |
[12] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.
doi: 10.1016/j.crma.2006.09.018. |
[13] |
J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.
|
[14] |
J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2008). Google Scholar |
[15] |
J.-M. Lasry and P.-L. Lions, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr}., (). Google Scholar |
[16] |
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations,, Ann. Mat. Pura Appl. (4), 177 (1999), 143.
doi: 10.1007/BF02505907. |
show all references
References:
[1] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.
doi: 10.1137/090758477. |
[2] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.
doi: 10.1137/100790069. |
[3] |
M. Arisawa and P.-L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.
doi: 10.1080/03605309808821413. |
[4] |
G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311.
doi: 10.1137/S0036141000369344. |
[5] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.
doi: 10.1017/S0308210500018631. |
[6] |
D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.
|
[7] |
D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games,, preprint., (). Google Scholar |
[8] |
D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem,, preprint., (). Google Scholar |
[9] |
O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, preprint., (). Google Scholar |
[10] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1967).
|
[11] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.
doi: 10.1016/j.crma.2006.09.019. |
[12] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.
doi: 10.1016/j.crma.2006.09.018. |
[13] |
J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.
|
[14] |
J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2008). Google Scholar |
[15] |
J.-M. Lasry and P.-L. Lions, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr}., (). Google Scholar |
[16] |
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations,, Ann. Mat. Pura Appl. (4), 177 (1999), 143.
doi: 10.1007/BF02505907. |
[1] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[2] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[3] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[4] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[5] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[6] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
[7] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[8] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[9] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[10] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[11] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[12] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[13] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[14] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[15] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[16] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[17] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[18] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[19] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[20] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]