June  2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279

Long time average of mean field games

1. 

Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France, France

2. 

56 Rue d'Assas, 75006 Paris, France

3. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scienti ca 1, 00133 Roma, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

We consider a model of mean field games system defined on a time interval $[0,T]$ and investigate its asymptotic behavior as the horizon $T$ tends to infinity. We show that the system, rescaled in a suitable way, converges to a stationary ergodic mean field game. The convergence holds with exponential rate and relies on energy estimates and the Hamiltonian structure of the system.
Citation: Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279
References:
[1]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[2]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[3]

M. Arisawa and P.-L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.  doi: 10.1080/03605309808821413.  Google Scholar

[4]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311.  doi: 10.1137/S0036141000369344.  Google Scholar

[5]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.  doi: 10.1017/S0308210500018631.  Google Scholar

[6]

D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[7]

D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games,, preprint., ().   Google Scholar

[8]

D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem,, preprint., ().   Google Scholar

[9]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, preprint., ().   Google Scholar

[10]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1967).   Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[14]

J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2008).   Google Scholar

[15]

J.-M. Lasry and P.-L. Lions, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr}., ().   Google Scholar

[16]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations,, Ann. Mat. Pura Appl. (4), 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

show all references

References:
[1]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[2]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[3]

M. Arisawa and P.-L. Lions, On ergodic stochastic control,, Comm. Partial Differential Equations, 23 (1998), 2187.  doi: 10.1080/03605309808821413.  Google Scholar

[4]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311.  doi: 10.1137/S0036141000369344.  Google Scholar

[5]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359.  doi: 10.1017/S0308210500018631.  Google Scholar

[6]

D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[7]

D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games,, preprint., ().   Google Scholar

[8]

D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem,, preprint., ().   Google Scholar

[9]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, preprint., ().   Google Scholar

[10]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1967).   Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[14]

J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2008).   Google Scholar

[15]

J.-M. Lasry and P.-L. Lions, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr}., ().   Google Scholar

[16]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations,, Ann. Mat. Pura Appl. (4), 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

[1]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[4]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[5]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[6]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[9]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[12]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[13]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[15]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[16]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[17]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[18]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[19]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[20]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (65)

[Back to Top]