\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long time average of mean field games

Abstract Related Papers Cited by
  • We consider a model of mean field games system defined on a time interval $[0,T]$ and investigate its asymptotic behavior as the horizon $T$ tends to infinity. We show that the system, rescaled in a suitable way, converges to a stationary ergodic mean field game. The convergence holds with exponential rate and relies on energy estimates and the Hamiltonian structure of the system.
    Mathematics Subject Classification: Primary: 35B40; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.doi: 10.1137/090758477.

    [2]

    Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109.doi: 10.1137/100790069.

    [3]

    M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.doi: 10.1080/03605309808821413.

    [4]

    G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.doi: 10.1137/S0036141000369344.

    [5]

    L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.doi: 10.1017/S0308210500018631.

    [6]

    D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.

    [7]

    D. A. Gomes, G. E. Pires and H. Sanchez-MorgadoA-priori estimates for stationary mean-field games, preprint.

    [8]

    D. A. Gomes and H. Sanchez-MorgadoA stochastic Evans-Aronsson problem, preprint.

    [9]

    O. GuéantMean field games with quadratic hamiltonian: A constructive scheme, preprint.

    [10]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence R.I., 1967.

    [11]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019.

    [12]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018.

    [13]

    J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.

    [14]

    J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory, preprint, 2008.

    [15]

    J.-M. Lasry and P.-L. LionsCours au Collège de France. Available from: http://www.college-de-france.fr.

    [16]

    A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4), 177 (1999), 143-172.doi: 10.1007/BF02505907.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(395) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return