June  2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303

A-priori estimates for stationary mean-field games

1. 

Departamento de Matemática and CAMGSD, IST Avenida Rovisco Pais, Lisboa, Portugal, Portugal

2. 

Instituto de Matem, Universidad Nacional Aut, M, Mexico

Received  November 2011 Revised  March 2012 Published  June 2012

In this paper we establish a new class of a-priori estimates for stationary mean-field games which have a quasi-variational structure. In particular we prove $W^{1,2}$ estimates for the value function $u$ and that the players distribution $m$ satisfies $\sqrt{m}\in W^{1,2}$. We discuss further results for power-like nonlinearities and prove higher regularity if the space dimension is 2. In particular we also obtain in this last case $W^{2,p}$ estimates for $u$.
Citation: Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303
References:
[1]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[2]

Julien Salomon, Aimée Lachapelle and Gabriel Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[3]

F. Camilli, Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[4]

F. Cagnetti, D. Gomes and H. V. Tran, Adjoint methods for obstacle problems and weakly coupled systems of PDE,, submitted., ().   Google Scholar

[5]

F. Cagnetti, D. Gomes and H. V. Tran, Aubry-Mather measures in the non convex setting,, submitted., ().   Google Scholar

[6]

Lawrence C. Evans and Charles K. Smart, Adjoint methods for the infinity Laplacian partial differential equation,, Arch. Ration. Mech. Anal., 201 (2011), 87.  doi: 10.1007/s00205-011-0399-x.  Google Scholar

[7]

Lawrence C. Evans, Some new PDE methods for weak KAM theory,, Calc. Var. Partial Differential Equations, 17 (2003), 159.  doi: 10.1007/s00526-002-0164-y.  Google Scholar

[8]

Lawrence C. Evans, Further PDE methods for weak KAM theory,, Calc. Var. Partial Differential Equations, 35 (2009), 435.  doi: 10.1007/s00526-008-0214-1.  Google Scholar

[9]

L. C. Evans, Adjoint and compensated compactness methods for Hamilton-Jacobi PDE,, Arch. Ration. Mech. Anal., 197 (2010), 1053.  doi: 10.1007/s00205-010-0307-9.  Google Scholar

[10]

A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[11]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043.   Google Scholar

[12]

A. Fathi, Orbite hétéroclines et ensemble de Peierls,, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213.   Google Scholar

[13]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[14]

D. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.   Google Scholar

[15]

D. Gomes, J. Mohr and R. R. Souza, Mean-field limit of a continuous time finite state game,, preprint, (2011).   Google Scholar

[16]

D. Gomes, A stochastic analogue of Aubry-Mather theory,, Nonlinearity, 15 (2002), 581.  doi: 10.1088/0951-7715/15/3/304.  Google Scholar

[17]

D. Gomes and H Sanchez-Morgado, On the stochastic Evans-Aronsson problem,, preprint, (2011).   Google Scholar

[18]

O. Gueant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).   Google Scholar

[19]

O. Gueant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.   Google Scholar

[20]

Minyi Huang, Peter E. Caines and Roland P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[21]

Minyi Huang, Roland P. Malhamé and Peter E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.   Google Scholar

[22]

Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[23]

Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[24]

Jean-Michel Lasry and Pierre-Louis Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[25]

Jean-Michel Lasry and Pierre-Louis Lions, "Mean Field Games,", Cahiers de la Chaire Finance et Développement Durable, (2007).   Google Scholar

[26]

Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2010).   Google Scholar

[27]

Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[28]

J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems,, Math. Z, 207 (1991), 169.  doi: 10.1007/BF02571383.  Google Scholar

[29]

Ricardo Mañé, On the minimizing measures of Lagrangian dynamical systems,, Nonlinearity, 5 (1992), 623.   Google Scholar

[30]

Kaizhi Wang, Action minimizing stochastic invariant measures for a class of Lagrangian systems,, Commun. Pure Appl. Anal., 7 (2008), 1211.   Google Scholar

show all references

References:
[1]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[2]

Julien Salomon, Aimée Lachapelle and Gabriel Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[3]

F. Camilli, Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[4]

F. Cagnetti, D. Gomes and H. V. Tran, Adjoint methods for obstacle problems and weakly coupled systems of PDE,, submitted., ().   Google Scholar

[5]

F. Cagnetti, D. Gomes and H. V. Tran, Aubry-Mather measures in the non convex setting,, submitted., ().   Google Scholar

[6]

Lawrence C. Evans and Charles K. Smart, Adjoint methods for the infinity Laplacian partial differential equation,, Arch. Ration. Mech. Anal., 201 (2011), 87.  doi: 10.1007/s00205-011-0399-x.  Google Scholar

[7]

Lawrence C. Evans, Some new PDE methods for weak KAM theory,, Calc. Var. Partial Differential Equations, 17 (2003), 159.  doi: 10.1007/s00526-002-0164-y.  Google Scholar

[8]

Lawrence C. Evans, Further PDE methods for weak KAM theory,, Calc. Var. Partial Differential Equations, 35 (2009), 435.  doi: 10.1007/s00526-008-0214-1.  Google Scholar

[9]

L. C. Evans, Adjoint and compensated compactness methods for Hamilton-Jacobi PDE,, Arch. Ration. Mech. Anal., 197 (2010), 1053.  doi: 10.1007/s00205-010-0307-9.  Google Scholar

[10]

A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[11]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043.   Google Scholar

[12]

A. Fathi, Orbite hétéroclines et ensemble de Peierls,, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213.   Google Scholar

[13]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[14]

D. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.   Google Scholar

[15]

D. Gomes, J. Mohr and R. R. Souza, Mean-field limit of a continuous time finite state game,, preprint, (2011).   Google Scholar

[16]

D. Gomes, A stochastic analogue of Aubry-Mather theory,, Nonlinearity, 15 (2002), 581.  doi: 10.1088/0951-7715/15/3/304.  Google Scholar

[17]

D. Gomes and H Sanchez-Morgado, On the stochastic Evans-Aronsson problem,, preprint, (2011).   Google Scholar

[18]

O. Gueant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).   Google Scholar

[19]

O. Gueant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.   Google Scholar

[20]

Minyi Huang, Peter E. Caines and Roland P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[21]

Minyi Huang, Roland P. Malhamé and Peter E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.   Google Scholar

[22]

Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[23]

Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[24]

Jean-Michel Lasry and Pierre-Louis Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[25]

Jean-Michel Lasry and Pierre-Louis Lions, "Mean Field Games,", Cahiers de la Chaire Finance et Développement Durable, (2007).   Google Scholar

[26]

Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Application of mean field games to growth theory,, preprint, (2010).   Google Scholar

[27]

Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[28]

J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems,, Math. Z, 207 (1991), 169.  doi: 10.1007/BF02571383.  Google Scholar

[29]

Ricardo Mañé, On the minimizing measures of Lagrangian dynamical systems,, Nonlinearity, 5 (1992), 623.   Google Scholar

[30]

Kaizhi Wang, Action minimizing stochastic invariant measures for a class of Lagrangian systems,, Commun. Pure Appl. Anal., 7 (2008), 1211.   Google Scholar

[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[2]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[8]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[13]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[14]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[15]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[16]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[17]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[18]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (28)

[Back to Top]