June  2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315

New numerical methods for mean field games with quadratic costs

1. 

UFR de Math, Universit, 175, rue du Chevaleret, 75013 Paris, France

Received  November 2011 Revised  March 2012 Published  June 2012

Mean field games have been introduced by J.-M. Lasry and P.-L. Lions in [13, 14, 15] as the limit case of stochastic differential games when the number of players goes to $+\infty$. In the case of quadratic costs, we present two changes of variables that allow to transform the mean field games (MFG) equations into two simpler systems of equations. The first change of variables, introduced in [11], leads to two heat equations with nonlinear source terms. The second change of variables, which is introduced for the first time in this paper, leads to two Hamilton-Jacobi-Bellman equations. Numerical methods based on these equations are presented and numerical experiments are carried out.
Citation: Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162. doi: 10.1137/090758477.

[3]

P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2010.

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, 43 (1984), 1-19. doi: 10.1090/S0025-5718-1984-0744921-8.

[5]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010.

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328.

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach, to appear in Mathematical Models and Methods in Applied Sciences (M3AS).

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme, to appear in the Annals of ISDG.

[9]

O. Guéant, "Mean Field Games and Applications to Economics," Ph.D thesis, Université Paris-Dauphine, 2009.

[10]

O. Guéant, A reference case for mean field games models, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276-294.

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588. doi: 10.1142/S0218202510004349.

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019.

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018.

[15]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France. Available from: http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp.

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162. doi: 10.1137/090758477.

[3]

P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2010.

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, 43 (1984), 1-19. doi: 10.1090/S0025-5718-1984-0744921-8.

[5]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010.

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328.

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach, to appear in Mathematical Models and Methods in Applied Sciences (M3AS).

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme, to appear in the Annals of ISDG.

[9]

O. Guéant, "Mean Field Games and Applications to Economics," Ph.D thesis, Université Paris-Dauphine, 2009.

[10]

O. Guéant, A reference case for mean field games models, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276-294.

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588. doi: 10.1142/S0218202510004349.

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019.

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018.

[15]

J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France. Available from: http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp.

[1]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics and Games, 2021, 8 (4) : 467-486. doi: 10.3934/jdg.2021014

[2]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[3]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[4]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics and Games, 2021, 8 (1) : 35-59. doi: 10.3934/jdg.2020033

[5]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[8]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[9]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[10]

Jeongho Kim, Bora Moon. Finite difference methods for the one-dimensional Chern-Simons gauged models. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022003

[11]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[12]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[13]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[14]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[15]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[16]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[17]

Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025

[18]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006

[19]

Lucio Boccardo, Luigi Orsina. The duality method for mean field games systems. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1343-1360. doi: 10.3934/cpaa.2022021

[20]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]