June  2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337

A modest proposal for MFG with density constraints

1. 

Laboratoire de Mathématiques d'Orsay, Faculté de Sciences, Université Paris-Sud, 91405 Orsay cedex, France

Received  November 2011 Revised  March 2012 Published  June 2012

We consider a typical problem in Mean Field Games: the congestion case, where in the cost that agents optimize there is a penalization for passing through zones with high density of agents, in a deterministic framework. This equilibrium problem is known to be equivalent to the optimization of a global functional including an $L^p$ norm of the density. The question arises as to produce a similar model replacing the $L^p$ penalization with an $L^\infty$ constraint, but the simplest approaches do not give meaningful definitions. Taking into account recent works about crowd motion, where the density constraint $\rho\leq 1$ was treated in terms of projections of the velocity field onto the set of admissible velocity (with a constraint on the divergence) and a pressure field was introduced, we propose a definition and write a system of PDEs including the usual Hamilton-Jacobi equation coupled with the continuity equation. For this system, we analyze an example and propose some open problems.
Citation: Filippo Santambrogio. A modest proposal for MFG with density constraints. Networks & Heterogeneous Media, 2012, 7 (2) : 337-347. doi: 10.3934/nhm.2012.7.337
References:
[1]

L. Ambrosio, Minimizing movements,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191.   Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[3]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375.  doi: 10.1007/s002110050002.  Google Scholar

[4]

G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics,, SIAM J. Control Optim., 48 (2009), 1961.  doi: 10.1137/07070543X.  Google Scholar

[5]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[6]

E. De Giorgi, New problems on minimizing movements,, in, 29 (1993), 81.   Google Scholar

[7]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.  doi: 10.1137/S0036141096303359.  Google Scholar

[8]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[9]

J.-M. Lasry and P.-L. Lions, Mean-field games,, Japan. J. Math, 2 (2007), 229.   Google Scholar

[10]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type,, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787.  doi: 10.1142/S0218202510004799.  Google Scholar

[11]

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling,, Net. Het. Media, 6 (2011), 485.   Google Scholar

[12]

B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations,", Traffic and Granular Flow, (2007).   Google Scholar

[13]

R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153.  doi: 10.1006/aima.1997.1634.  Google Scholar

[14]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[15]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications,, Disc. Cont. Dyn. Systems, 31 (2011), 1427.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[16]

C. Villani, "Topics in Optimal Transportation,", Grad. Stud. Math., 58 (2003).   Google Scholar

[17]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).   Google Scholar

show all references

References:
[1]

L. Ambrosio, Minimizing movements,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191.   Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[3]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375.  doi: 10.1007/s002110050002.  Google Scholar

[4]

G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics,, SIAM J. Control Optim., 48 (2009), 1961.  doi: 10.1137/07070543X.  Google Scholar

[5]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[6]

E. De Giorgi, New problems on minimizing movements,, in, 29 (1993), 81.   Google Scholar

[7]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.  doi: 10.1137/S0036141096303359.  Google Scholar

[8]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[9]

J.-M. Lasry and P.-L. Lions, Mean-field games,, Japan. J. Math, 2 (2007), 229.   Google Scholar

[10]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type,, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787.  doi: 10.1142/S0218202510004799.  Google Scholar

[11]

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling,, Net. Het. Media, 6 (2011), 485.   Google Scholar

[12]

B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations,", Traffic and Granular Flow, (2007).   Google Scholar

[13]

R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153.  doi: 10.1006/aima.1997.1634.  Google Scholar

[14]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[15]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications,, Disc. Cont. Dyn. Systems, 31 (2011), 1427.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[16]

C. Villani, "Topics in Optimal Transportation,", Grad. Stud. Math., 58 (2003).   Google Scholar

[17]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).   Google Scholar

[1]

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485

[2]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[3]

Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic & Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025

[4]

Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445

[5]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[6]

Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078

[7]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[8]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[9]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[10]

Yuanshi Wang, Donald L. DeAngelis. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences & Engineering, 2012, 9 (2) : 431-444. doi: 10.3934/mbe.2012.9.431

[11]

Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213

[12]

Banavara N. Shashikanth. Kirchhoff's equations of motion via a constrained Zakharov system. Journal of Geometric Mechanics, 2016, 8 (4) : 461-485. doi: 10.3934/jgm.2016016

[13]

Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609

[14]

Jing Qin, Mengmeng Cui, Yiping Lu, Chao Yang, Yanhua Huo, Yugui Jia. PID parameter optimization algorithm for pressure control of heating system of ground source heat pump. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020257

[15]

Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks & Heterogeneous Media, 2016, 11 (1) : 29-47. doi: 10.3934/nhm.2016.11.29

[16]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[17]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[18]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[19]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[20]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]