September  2012, 7(3): 399-413. doi: 10.3934/nhm.2012.7.399

Bipartite networks provide new insights on international trade markets

1. 

Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Spain

2. 

Grupo de Sistemas Complejos, E.U.I.T Agrícola, Universidad Politécnica de Madrid, Spain

3. 

The Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States

Received  December 2011 Revised  June 2012 Published  October 2012

Adam Smith is considered the father of modern economics. His research on the Wealth of Nations [10] is the first scientific work that theorized about the complexity of economic systems and how an invisible hand self-regulates markets and their behavior. In this way, we study international trade markets as complex networks. We analyze their topological properties, structure and temporal dynamics based on actual data. Our main premise states that trade networks are bipartite in nature because importers and exporters play a different role in the system. We apply a methodology developed for mutualistic ecosystems, finding minor gaps in it. We address such gaps by using well-known techniques from other related scientific work. The evidence supports the fact that our premise is a realistic hypothesis.
Citation: Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo. Bipartite networks provide new insights on international trade markets. Networks & Heterogeneous Media, 2012, 7 (3) : 399-413. doi: 10.3934/nhm.2012.7.399
References:
[1]

B. Balassa, Comparative advantage in manufactured goods: A reappraisal,, Rev. Econ. Stat., 68 (1986), 315. doi: 10.2307/1925512. Google Scholar

[2]

A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proc. Nat. Acad. Sci., 101 (2004), 3747. doi: 10.1073/pnas.0400087101. Google Scholar

[3]

M. Bastian, S. Heymann and M. Jacomy, "Gephi: An Open Source Software for Exploring and Manipulating Networks,", International AAAI Conference on Weblogs and Social Media, (2009). Google Scholar

[4]

G. Fagiolo, J. Reyes and S. Schiavo, World-trade web: Topological properties, dynamics and evolution,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.036115. Google Scholar

[5]

L. J. Gilarranz, J. M. Pastor and J. Galeano, The architecture of weighted mutualistic networks,, Oikos, 121 (2012), 1154. doi: 10.1111/j.1600-0706.2011.19592.x. Google Scholar

[6]

C. A. Hidalgo, B. Klinger, A. L. Barabási and R. Hausmann, The product space conditions the development of nations,, Science, 317 (2007), 482. doi: 10.1126/science.1144581. Google Scholar

[7]

P. G. Lind, M. C. González and H. J. Herrmann, Cycles and clustering in bipartite networks,, Physical Review E, 72 (2005). Google Scholar

[8]

M. A. Serrano and M. Borguna, Topology of the world trade web,, Phys. Rev. E, 68 (2003). doi: 10.1103/PhysRevE.68.015101. Google Scholar

[9]

M. A. Serrano, M. Borguna and A. Vespignani, Patterns of dominant flows in the world trade web,, J. Econ. Interac. Coord., 2 (2007), 111. Google Scholar

[10]

A. Smith, "An Inquiry Into The Nature And Cause Of The Wealth of Nations,", W. Strahan and T. Cadell, (1776). Google Scholar

[11]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. I. A binary network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118. Google Scholar

[12]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. II. A weighted network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118. Google Scholar

[13]

, "United Nations Commodity Trade Statistics Database (UN Comtrade),", 2011. Available from: , (). Google Scholar

show all references

References:
[1]

B. Balassa, Comparative advantage in manufactured goods: A reappraisal,, Rev. Econ. Stat., 68 (1986), 315. doi: 10.2307/1925512. Google Scholar

[2]

A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proc. Nat. Acad. Sci., 101 (2004), 3747. doi: 10.1073/pnas.0400087101. Google Scholar

[3]

M. Bastian, S. Heymann and M. Jacomy, "Gephi: An Open Source Software for Exploring and Manipulating Networks,", International AAAI Conference on Weblogs and Social Media, (2009). Google Scholar

[4]

G. Fagiolo, J. Reyes and S. Schiavo, World-trade web: Topological properties, dynamics and evolution,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.036115. Google Scholar

[5]

L. J. Gilarranz, J. M. Pastor and J. Galeano, The architecture of weighted mutualistic networks,, Oikos, 121 (2012), 1154. doi: 10.1111/j.1600-0706.2011.19592.x. Google Scholar

[6]

C. A. Hidalgo, B. Klinger, A. L. Barabási and R. Hausmann, The product space conditions the development of nations,, Science, 317 (2007), 482. doi: 10.1126/science.1144581. Google Scholar

[7]

P. G. Lind, M. C. González and H. J. Herrmann, Cycles and clustering in bipartite networks,, Physical Review E, 72 (2005). Google Scholar

[8]

M. A. Serrano and M. Borguna, Topology of the world trade web,, Phys. Rev. E, 68 (2003). doi: 10.1103/PhysRevE.68.015101. Google Scholar

[9]

M. A. Serrano, M. Borguna and A. Vespignani, Patterns of dominant flows in the world trade web,, J. Econ. Interac. Coord., 2 (2007), 111. Google Scholar

[10]

A. Smith, "An Inquiry Into The Nature And Cause Of The Wealth of Nations,", W. Strahan and T. Cadell, (1776). Google Scholar

[11]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. I. A binary network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118. Google Scholar

[12]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. II. A weighted network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118. Google Scholar

[13]

, "United Nations Commodity Trade Statistics Database (UN Comtrade),", 2011. Available from: , (). Google Scholar

[1]

Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks & Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429

[2]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[3]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[4]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[5]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[6]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[7]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[8]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[9]

Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks & Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473

[10]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[11]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[12]

Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada. Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks & Heterogeneous Media, 2012, 7 (3) : i-iii. doi: 10.3934/nhm.2012.7.3i

[13]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[14]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[15]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[16]

Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang. A sufficient condition for classified networks to possess complex network features. Networks & Heterogeneous Media, 2012, 7 (1) : 59-69. doi: 10.3934/nhm.2012.7.59

[17]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

[18]

Marco Sarich, Natasa Djurdjevac Conrad, Sharon Bruckner, Tim O. F. Conrad, Christof Schütte. Modularity revisited: A novel dynamics-based concept for decomposing complex networks. Journal of Computational Dynamics, 2014, 1 (1) : 191-212. doi: 10.3934/jcd.2014.1.191

[19]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[20]

Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]